本站已收录 番号和无损神作磁力链接/BT种子 

林軒田(Hsuan-Tien Lin) - [機器學習基石]Machine Learning Foundations

种子简介

种子名称: 林軒田(Hsuan-Tien Lin) - [機器學習基石]Machine Learning Foundations
文件类型: 视频
文件数目: 65个文件
文件大小: 2.04 GB
收录时间: 2019-2-24 21:03
已经下载: 3
资源热度: 190
最近下载: 2025-1-11 08:28

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:f5ccadecda7959e556dbbb90a26c92e861a0ded8&dn=林軒田(Hsuan-Tien Lin) - [機器學習基石]Machine Learning Foundations 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

林軒田(Hsuan-Tien Lin) - [機器學習基石]Machine Learning Foundations.torrent
  • P10 3-1-Learning with Different Output Space @ Machine Learning Foundations (機器學習基石).mp464.54MB
  • P11 3-2-Learning with Different Data Label @ Machine Learning Foundations (機器學習基石).mp458.8MB
  • P13 3-4-Learning with Different Input Space @ Machine Learning Foundations (機器學習基石).mp446.5MB
  • P30 8-1-Noise and Probabilistic Target @ Machine Learning Foundations (機器學習基石).mp445.33MB
  • P2 1-2-What Is Machine Learning @ Machine Learning Foundations (機器學習基石).mp444.01MB
  • P46 12-1-Quadratic Hypotheses @ Machine Learning Foundations (機器學習基石).mp443.16MB
  • P3 1-3-Applications of Machine Learning @ Machine Learning Foundations (機器學習基石).mp442.19MB
  • P54 14-1-Regularized Hypothesis Set @ Machine Learning Foundations (機器學習基石).mp441.09MB
  • P55 14-2-Weight Decay Regularization @ Machine Learning Foundations (機器學習基石).mp440.79MB
  • P19 5-2-Effective Number of Lines @ Machine Learning Foundations (機器學習基石).mp440.69MB
  • P12 3-3-Learning with Different Protocol @ Machine Learning Foundations (機器學習基石).mp439.81MB
  • P9 2-4-Non-Separable Data @ Machine Learning Foundations (機器學習基石).mp439.56MB
  • P58 15-1-Model Selection Problem @ Machine Learning Foundations (機器學習基石).mp438.68MB
  • P42 11-1-Linear Models for Binary Classification @ Machine Learning Foundations (機器學習基石).mp438.55MB
  • P18 5-1-Recap and Preview @ Machine Learning Foundations (機器學習基石).mp437.97MB
  • P16 4-3-Connection to Learning @ Machine Learning Foundations (機器學習基石).mp437.83MB
  • P17 4-4-Connection to Real Learning @ Machine Learning Foundations (機器學習基石).mp437.7MB
  • P14 4-1-Learning is Impossible @ Machine Learning Foundations (機器學習基石).mp437.62MB
  • P41 10-4-Gradient Descent @ Machine Learning Foundations (機器學習基石).mp437.56MB
  • P52 13-3-Deterministic Noise @ Machine Learning Foundations (機器學習基石).mp437.5MB
  • P26 7-1-Definition of VC Dimension @ Machine Learning Foundations (機器學習基石).mp436.36MB
  • P48 12-3-Price of Nonlinear Transform @ Machine Learning Foundations (機器學習基石).mp436.34MB
  • P36 9-3-Generalization Issue @ Machine Learning Foundations (機器學習基石).mp435.92MB
  • P63 16-2-Sampling Bias @ Machine Learning Foundations (機器學習基石).mp434.56MB
  • P25 6-4-A Pictorial Proof @ Machine Learning Foundations (機器學習基石).mp433.9MB
  • P20 5-3-Effective Number of Hypotheses @ Machine Learning Foundations (機器學習基石).mp433.43MB
  • P1 1-1-Course Introduction @ Machine Learning Foundations (機器學習基石).mp433.27MB
  • P51 13-2-The Role of Noise and Data Size @ Machine Learning Foundations (機器學習基石).mp432.91MB
  • P6 2-1-Perceptron Hypothesis Set @ Machine Learning Foundations (機器學習基石).mp432.7MB
  • P50 13-1-What is Overfitting @ Machine Learning Foundations (機器學習基石).mp432.4MB
  • P43 11-2-Stochastic Gradient Descent @ Machine Learning Foundations (機器學習基石).mp432.32MB
  • P64 16-3-Data Snooping @ Machine Learning Foundations (機器學習基石).mp432.16MB
  • P4 1-4-Components of Learning @ Machine Learning Foundations (機器學習基石).mp432.12MB
  • P33 8-4-Weighted Classification @ Machine Learning Foundations (機器學習基石).mp431.98MB
  • P15 4-2-Probability to the Rescue @ Machine Learning Foundations (機器學習基石).mp431.8MB
  • P57 14-4-General Regularizers @ Machine Learning Foundations (機器學習基石).mp431.28MB
  • P22 6-1-Restriction of Break Point @ Machine Learning Foundations (機器學習基石).mp430.46MB
  • P24 6-3-Bounding Function Inductive Cases @ Machine Learning Foundations (機器學習基石).mp430.07MB
  • P29 7-4-Interpreting VC Dimension @ Machine Learning Foundations (機器學習基石).mp429.41MB
  • P61 15-4-V-Fold Cross Validation @ Machine Learning Foundations (機器學習基石).mp428.66MB
  • P40 10-3-Gradient of Logistic Regression Error @ Machine Learning Foundations (機器學習基石).mp428.14MB
  • P27 7-2-VC Dimension of Perceptrons @ Machine Learning Foundations (機器學習基石).mp427.26MB
  • P32 8-3-Algorithmic Error Measure @ Machine Learning Foundations (機器學習基石).mp426.91MB
  • P35 9-2-Linear Regression Algorithm @ Machine Learning Foundations (機器學習基石).mp426.89MB
  • P62 16-1-Occam's Razor @ Machine Learning Foundations (機器學習基石).mp426.81MB
  • P39 10-2-Logistic Regression Error @ Machine Learning Foundations (機器學習基石).mp426.44MB
  • P34 9-1-Linear Regression Problem @ Machine Learning Foundations (機器學習基石).mp426.37MB
  • P44 11-3-Multiclass via Logistic Regression @ Machine Learning Foundations (機器學習基石).mp426.27MB
  • P56 14-3-Regularization and VC Theory @ Machine Learning Foundations (機器學習基石).mp425.96MB
  • P37 9-4-Linear Regression for Binary Classification @ Machine Learning Foundations (機器學習基石).mp425.92MB
  • P8 2-3-Guarantee of PLA @ Machine Learning Foundations (機器學習基石).mp425.68MB
  • P7 2-2-Perceptron Learning Algorithm @ Machine Learning Foundations (機器學習基石).mp425.12MB
  • P21 5-4-Break Point @ Machine Learning Foundations (機器學習基石).mp423.63MB
  • P60 15-3-Leave-One-Out Cross Validation @ Machine Learning Foundations (機器學習基石).mp423.35MB
  • P31 8-2-Error Measure @ Machine Learning Foundations (機器學習基石).mp422.93MB
  • P53 13-4-Dealing with Overfitting @ Machine Learning Foundations (機器學習基石).mp422.71MB
  • P38 10-1-Logistic Regression Problem @ Machine Learning Foundations (機器學習基石).mp422.69MB
  • P59 15-2-Validation @ Machine Learning Foundations (機器學習基石).mp421.76MB
  • P45 11-4-Multiclass via Binary Classification @ Machine Learning Foundations (機器學習基石).mp421.73MB
  • P65 16-4-Power of Three @ Machine Learning Foundations (機器學習基石).mp421.1MB
  • P5 1-5-Machine Learning and Other Fields @ Machine Learning Foundations (機器學習基石).mp419.63MB
  • P47 12-2-Nonlinear Transform @ Machine Learning Foundations (機器學習基石).mp418.32MB
  • P49 12-4-Structured Hypothesis Sets @ Machine Learning Foundations (機器學習基石).mp416.91MB
  • P23 6-2-Bounding Function Basic Cases @ Machine Learning Foundations (機器學習基石).mp416.16MB
  • P28 7-3-Physical Intuition of VC Dimension @ Machine Learning Foundations (機器學習基石).mp414.61MB