种子简介
种子名称:
[FreeCourseLab.me] Udemy - Data Science Supervised Machine Learning in Python
文件类型:
视频
文件数目:
52个文件
文件大小:
1.03 GB
收录时间:
2021-7-25 23:03
已经下载:
3次
资源热度:
226
最近下载:
2025-1-19 21:23
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:ed39d71793465479b9e11ea594639523f8a1da24&dn=[FreeCourseLab.me] Udemy - Data Science Supervised Machine Learning in Python
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[FreeCourseLab.me] Udemy - Data Science Supervised Machine Learning in Python.torrent
1. Introduction and Review/1. Introduction and Outline.mp47.63MB
1. Introduction and Review/2. Review of Important Concepts.mp46.01MB
1. Introduction and Review/3. Where to get the Code and Data.mp43.86MB
1. Introduction and Review/4. How to Succeed in this Course.mp43.3MB
2. K-Nearest Neighbor/1. K-Nearest Neighbor Intuition.mp417.59MB
2. K-Nearest Neighbor/2. K-Nearest Neighbor Concepts.mp48.6MB
2. K-Nearest Neighbor/3. KNN in Code with MNIST.mp417.96MB
2. K-Nearest Neighbor/4. When KNN Can Fail.mp47.71MB
2. K-Nearest Neighbor/5. KNN for the XOR Problem.mp44.26MB
2. K-Nearest Neighbor/6. KNN for the Donut Problem.mp45.42MB
2. K-Nearest Neighbor/7. Effect of K.mp435.8MB
2. K-Nearest Neighbor/8. KNN Exercise.mp416.87MB
3. Naive Bayes and Bayes Classifiers/1. Bayes Classifier Intuition (Continuous).mp480.16MB
3. Naive Bayes and Bayes Classifiers/2. Bayes Classifier Intuition (Discrete).mp450.09MB
3. Naive Bayes and Bayes Classifiers/3. Naive Bayes.mp415.7MB
3. Naive Bayes and Bayes Classifiers/4. Naive Bayes Handwritten Example.mp45.84MB
3. Naive Bayes and Bayes Classifiers/5. Naive Bayes in Code with MNIST.mp414.43MB
3. Naive Bayes and Bayes Classifiers/6. Non-Naive Bayes.mp47.3MB
3. Naive Bayes and Bayes Classifiers/7. Bayes Classifier in Code with MNIST.mp44.44MB
3. Naive Bayes and Bayes Classifiers/8. Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).mp410.35MB
3. Naive Bayes and Bayes Classifiers/9. Generative vs Discriminative Models.mp45.12MB
4. Decision Trees/1. Decision Tree Intuition.mp420.37MB
4. Decision Trees/2. Decision Tree Basics.mp48.28MB
4. Decision Trees/3. Information Entropy.mp46.99MB
4. Decision Trees/4. Maximizing Information Gain.mp413.96MB
4. Decision Trees/5. Choosing the Best Split.mp46.72MB
4. Decision Trees/6. Decision Tree in Code.mp430.34MB
5. Perceptrons/1. Perceptron Concepts.mp412.22MB
5. Perceptrons/2. Perceptron in Code.mp413.77MB
5. Perceptrons/3. Perceptron for MNIST and XOR.mp48.75MB
5. Perceptrons/4. Perceptron Loss Function.mp46.29MB
6. Practical Machine Learning/1. Hyperparameters and Cross-Validation.mp47.43MB
6. Practical Machine Learning/2. Feature Extraction and Feature Selection.mp47.1MB
6. Practical Machine Learning/3. Comparison to Deep Learning.mp48.7MB
6. Practical Machine Learning/4. Multiclass Classification.mp45.66MB
6. Practical Machine Learning/5. Sci-Kit Learn.mp415.82MB
6. Practical Machine Learning/6. Regression with Sci-Kit Learn is Easy.mp410.75MB
7. Building a Machine Learning Web Service/1. Building a Machine Learning Web Service Concepts.mp47.24MB
7. Building a Machine Learning Web Service/2. Building a Machine Learning Web Service Code.mp411.87MB
8. Conclusion/1. What’s Next Support Vector Machines and Ensemble Methods (e.g. Random Forest).mp46.27MB
9. Appendix FAQ/1. What is the Appendix.mp45.45MB
9. Appendix FAQ/10. Python 2 vs Python 3.mp47.84MB
9. Appendix FAQ/11. What order should I take your courses in (part 1).mp429.32MB
9. Appendix FAQ/12. What order should I take your courses in (part 2).mp437.63MB
9. Appendix FAQ/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp437.81MB
9. Appendix FAQ/3. Windows-Focused Environment Setup 2018.mp4186.38MB
9. Appendix FAQ/4. How to install Numpy, Scipy, Matplotlib, and Sci-Kit Learn.mp443.92MB
9. Appendix FAQ/5. How to Code by Yourself (part 1).mp424.53MB
9. Appendix FAQ/6. How to Code by Yourself (part 2).mp414.8MB
9. Appendix FAQ/7. How to Succeed in this Course (Long Version).mp413MB
9. Appendix FAQ/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.96MB
9. Appendix FAQ/9. Proof that using Jupyter Notebook is the same as not using it.mp478.25MB