本站已收录 番号和无损神作磁力链接/BT种子 

[DesireCourse.Com] Udemy - Machine Learning Basics Building Regression Model in Python

种子简介

种子名称: [DesireCourse.Com] Udemy - Machine Learning Basics Building Regression Model in Python
文件类型: 视频
文件数目: 52个文件
文件大小: 2.66 GB
收录时间: 2020-8-22 23:49
已经下载: 3
资源热度: 148
最近下载: 2024-11-2 16:28

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:ebb55baacfcefc255b458060844c8129e61fb0e8&dn=[DesireCourse.Com] Udemy - Machine Learning Basics Building Regression Model in Python 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[DesireCourse.Com] Udemy - Machine Learning Basics Building Regression Model in Python.torrent
  • 1. Introduction/1. Welcome to the course!.mp416.27MB
  • 1. Introduction/2. Course contents.mp447.85MB
  • 2. Basics of Statistics/1. Types of Data.mp425.86MB
  • 2. Basics of Statistics/2. Types of Statistics.mp413.23MB
  • 2. Basics of Statistics/3. Describing data Graphically.mp482.21MB
  • 2. Basics of Statistics/4. Measures of Centers.mp445.67MB
  • 2. Basics of Statistics/6. Measures of Dispersion.mp428.39MB
  • 3. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp418.61MB
  • 3. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp473.07MB
  • 3. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp451.3MB
  • 3. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp415.92MB
  • 3. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp480.64MB
  • 3. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp473.67MB
  • 3. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp454.13MB
  • 3. Setting up Python and Jupyter Notebook/8. Working with Panda Library of Python.mp456.46MB
  • 3. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp448.87MB
  • 4. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4123.9MB
  • 4. Introduction to Machine Learning/2. Building a Machine Learning Model.mp445.26MB
  • 5. Data Preprocessing/1. Gathering Business Knowledge.mp425.11MB
  • 5. Data Preprocessing/10. Outlier Treatment in Python.mp486.57MB
  • 5. Data Preprocessing/12. Missing Value Imputation.mp427.56MB
  • 5. Data Preprocessing/13. Missing Value Imputation in Python.mp428.59MB
  • 5. Data Preprocessing/15. Seasonality in Data.mp420.88MB
  • 5. Data Preprocessing/16. Bi-variate analysis and Variable transformation.mp4113.73MB
  • 5. Data Preprocessing/17. Variable transformation and deletion in Python.mp453.4MB
  • 5. Data Preprocessing/19. Non-usable variables.mp423.95MB
  • 5. Data Preprocessing/2. Data Exploration.mp423.41MB
  • 5. Data Preprocessing/20. Dummy variable creation Handling qualitative data.mp440.63MB
  • 5. Data Preprocessing/21. Dummy variable creation in Python.mp433.89MB
  • 5. Data Preprocessing/23. Correlation Analysis.mp481.3MB
  • 5. Data Preprocessing/24. Correlation Analysis in Python.mp468.03MB
  • 5. Data Preprocessing/3. The Dataset and the Data Dictionary.mp478.59MB
  • 5. Data Preprocessing/4. Importing Data in Python.mp432.46MB
  • 5. Data Preprocessing/6. Univariate analysis and EDD.mp427.3MB
  • 5. Data Preprocessing/7. EDD in Python.mp475.08MB
  • 5. Data Preprocessing/9. Outlier Treatment.mp427.78MB
  • 6. Linear Regression/1. The Problem Statement.mp410.68MB
  • 6. Linear Regression/10. Multiple Linear Regression in Python.mp488.14MB
  • 6. Linear Regression/12. Test-train split.mp449.14MB
  • 6. Linear Regression/13. Bias Variance trade-off.mp429.6MB
  • 6. Linear Regression/14. Test train split in Python.mp457.77MB
  • 6. Linear Regression/15. Linear models other than OLS.mp419.18MB
  • 6. Linear Regression/16. Subset selection techniques.mp487.14MB
  • 6. Linear Regression/17. Shrinkage methods Ridge and Lasso.mp438.64MB
  • 6. Linear Regression/18. Ridge regression and Lasso in Python.mp4156.64MB
  • 6. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp450.27MB
  • 6. Linear Regression/3. Assessing accuracy of predicted coefficients.mp4104.42MB
  • 6. Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp449.72MB
  • 6. Linear Regression/5. Simple Linear Regression in Python.mp478.63MB
  • 6. Linear Regression/7. Multiple Linear Regression.mp438.91MB
  • 6. Linear Regression/8. The F - statistic.mp464.12MB
  • 6. Linear Regression/9. Interpreting results of Categorical variables.mp427.13MB