本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCourseSite.com] Udemy - Data Science Supervised Machine Learning in Python

种子简介

种子名称: [FreeCourseSite.com] Udemy - Data Science Supervised Machine Learning in Python
文件类型: 视频
文件数目: 51个文件
文件大小: 1004.15 MB
收录时间: 2020-1-23 12:45
已经下载: 3
资源热度: 146
最近下载: 2024-11-14 21:24

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:e61fe4d155bf84133951d1dd35df3c0e0cb6141c&dn=[FreeCourseSite.com] Udemy - Data Science Supervised Machine Learning in Python 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCourseSite.com] Udemy - Data Science Supervised Machine Learning in Python.torrent
  • 1. Introduction and Review/1. Introduction and Outline.mp47.63MB
  • 1. Introduction and Review/2. Review of Important Concepts.mp46.01MB
  • 1. Introduction and Review/3. Where to get the Code and Data.mp43.86MB
  • 1. Introduction and Review/4. How to Succeed in this Course.mp43.3MB
  • 2. K-Nearest Neighbor/1. K-Nearest Neighbor Intuition.mp417.58MB
  • 2. K-Nearest Neighbor/2. K-Nearest Neighbor Concepts.mp48.6MB
  • 2. K-Nearest Neighbor/3. KNN in Code with MNIST.mp417.96MB
  • 2. K-Nearest Neighbor/4. When KNN Can Fail.mp47.7MB
  • 2. K-Nearest Neighbor/5. KNN for the XOR Problem.mp44.26MB
  • 2. K-Nearest Neighbor/6. KNN for the Donut Problem.mp45.43MB
  • 2. K-Nearest Neighbor/7. Effect of K.mp435.8MB
  • 3. Naive Bayes and Bayes Classifiers/1. Bayes Classifier Intuition (Continuous).mp480.16MB
  • 3. Naive Bayes and Bayes Classifiers/2. Bayes Classifier Intuition (Discrete).mp450.1MB
  • 3. Naive Bayes and Bayes Classifiers/3. Naive Bayes.mp415.7MB
  • 3. Naive Bayes and Bayes Classifiers/4. Naive Bayes Handwritten Example.mp45.84MB
  • 3. Naive Bayes and Bayes Classifiers/5. Naive Bayes in Code with MNIST.mp414.43MB
  • 3. Naive Bayes and Bayes Classifiers/6. Non-Naive Bayes.mp47.31MB
  • 3. Naive Bayes and Bayes Classifiers/7. Bayes Classifier in Code with MNIST.mp44.44MB
  • 3. Naive Bayes and Bayes Classifiers/8. Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA).mp410.35MB
  • 3. Naive Bayes and Bayes Classifiers/9. Generative vs Discriminative Models.mp45.12MB
  • 4. Decision Trees/1. Decision Tree Intuition.mp420.37MB
  • 4. Decision Trees/2. Decision Tree Basics.mp48.29MB
  • 4. Decision Trees/3. Information Entropy.mp47MB
  • 4. Decision Trees/4. Maximizing Information Gain.mp413.96MB
  • 4. Decision Trees/5. Choosing the Best Split.mp46.72MB
  • 4. Decision Trees/6. Decision Tree in Code.mp430.34MB
  • 5. Perceptrons/1. Perceptron Concepts.mp412.22MB
  • 5. Perceptrons/2. Perceptron in Code.mp413.76MB
  • 5. Perceptrons/3. Perceptron for MNIST and XOR.mp48.74MB
  • 5. Perceptrons/4. Perceptron Loss Function.mp46.28MB
  • 6. Practical Machine Learning/1. Hyperparameters and Cross-Validation.mp47.43MB
  • 6. Practical Machine Learning/2. Feature Extraction and Feature Selection.mp47.1MB
  • 6. Practical Machine Learning/3. Comparison to Deep Learning.mp48.7MB
  • 6. Practical Machine Learning/4. Multiclass Classification.mp45.65MB
  • 6. Practical Machine Learning/5. Sci-Kit Learn.mp415.81MB
  • 6. Practical Machine Learning/6. Regression with Sci-Kit Learn is Easy.mp410.76MB
  • 7. Building a Machine Learning Web Service/1. Building a Machine Learning Web Service Concepts.mp47.24MB
  • 7. Building a Machine Learning Web Service/2. Building a Machine Learning Web Service Code.mp411.87MB
  • 8. Conclusion/1. What’s Next Support Vector Machines and Ensemble Methods (e.g. Random Forest).mp46.27MB
  • 9. Appendix/1. What is the Appendix.mp45.45MB
  • 9. Appendix/10. Python 2 vs Python 3.mp47.83MB
  • 9. Appendix/11. What order should I take your courses in (part 1).mp429.32MB
  • 9. Appendix/12. What order should I take your courses in (part 2).mp437.62MB
  • 9. Appendix/2. Where to get Udemy coupons and FREE deep learning material.mp44.02MB
  • 9. Appendix/3. Windows-Focused Environment Setup 2018.mp4186.38MB
  • 9. Appendix/4. How to install Numpy, Scipy, Matplotlib, and Sci-Kit Learn.mp443.92MB
  • 9. Appendix/5. How to Code by Yourself (part 1).mp424.53MB
  • 9. Appendix/6. How to Code by Yourself (part 2).mp414.8MB
  • 9. Appendix/7. How to Succeed in this Course (Long Version).mp412.99MB
  • 9. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.96MB
  • 9. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp478.25MB