本站已收录 番号和无损神作磁力链接/BT种子 

[Udemy] Complete Guide to TensorFlow for Deep Learning with Python (2020) [En]

种子简介

种子名称: [Udemy] Complete Guide to TensorFlow for Deep Learning with Python (2020) [En]
文件类型: 视频
文件数目: 89个文件
文件大小: 1.67 GB
收录时间: 2023-1-22 18:36
已经下载: 3
资源热度: 351
最近下载: 2025-1-26 18:51

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:d8eb11d600dabe5b6e77d875377c7eb92551867b&dn=[Udemy] Complete Guide to TensorFlow for Deep Learning with Python (2020) [En] 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[Udemy] Complete Guide to TensorFlow for Deep Learning with Python (2020) [En].torrent
  • 1. Introduction/2. Course Overview -- PLEASE DON'T SKIP THIS LECTURE! Thanks ).mp416.38MB
  • 1. Introduction/1. Introduction.mp411.95MB
  • 2. Installation and Setup/2. Installing TensorFlow and Environment Setup.mp427.83MB
  • 3. What is Machine Learning/1. Machine Learning Overview.mp430.44MB
  • 4. Crash Course Overview/1. Crash Course Section Introduction.mp42.15MB
  • 4. Crash Course Overview/2. NumPy Crash Course.mp432.51MB
  • 4. Crash Course Overview/3. Pandas Crash Course.mp49.02MB
  • 4. Crash Course Overview/4. Data Visualization Crash Course.mp419.52MB
  • 4. Crash Course Overview/5. SciKit Learn Preprocessing Overview.mp420.3MB
  • 4. Crash Course Overview/6. Crash Course Review Exercise.mp47.66MB
  • 4. Crash Course Overview/7. Crash Course Review Exercise - Solutions.mp417.39MB
  • 5. Introduction to Neural Networks/1. Introduction to Neural Networks.mp41.59MB
  • 5. Introduction to Neural Networks/2. Introduction to Perceptron.mp46.79MB
  • 5. Introduction to Neural Networks/3. Neural Network Activation Functions.mp48.62MB
  • 5. Introduction to Neural Networks/4. Cost Functions.mp44.99MB
  • 5. Introduction to Neural Networks/5. Gradient Descent Backpropagation.mp44.6MB
  • 5. Introduction to Neural Networks/6. TensorFlow Playground.mp427.22MB
  • 5. Introduction to Neural Networks/7. Manual Creation of Neural Network - Part One.mp412.54MB
  • 5. Introduction to Neural Networks/8. Manual Creation of Neural Network - Part Two - Operations.mp411.42MB
  • 5. Introduction to Neural Networks/9. Manual Creation of Neural Network - Part Three - Placeholders and Variables.mp413.26MB
  • 5. Introduction to Neural Networks/10. Manual Creation of Neural Network - Part Four - Session.mp425.17MB
  • 5. Introduction to Neural Networks/11. Manual Neural Network Classification Task.mp440.53MB
  • 6. TensorFlow Basics/1. Introduction to TensorFlow.mp41.97MB
  • 6. TensorFlow Basics/2. TensorFlow Basic Syntax.mp419MB
  • 6. TensorFlow Basics/3. TensorFlow Graphs.mp48.55MB
  • 6. TensorFlow Basics/4. Variables and Placeholders.mp412.84MB
  • 6. TensorFlow Basics/5. TensorFlow - A Neural Network - Part One.mp411.64MB
  • 6. TensorFlow Basics/6. TensorFlow - A Neural Network - Part Two.mp432.52MB
  • 6. TensorFlow Basics/7. TensorFlow Regression Example - Part One.mp430.06MB
  • 6. TensorFlow Basics/8. TensorFlow Regression Example _ Part Two.mp457.8MB
  • 6. TensorFlow Basics/9. TensorFlow Classification Example - Part One.mp423.76MB
  • 6. TensorFlow Basics/10. TensorFlow Classification Example - Part Two.mp431.95MB
  • 6. TensorFlow Basics/11. TF Regression Exercise.mp47.97MB
  • 6. TensorFlow Basics/12. TF Regression Exercise Solution Walkthrough.mp427.77MB
  • 6. TensorFlow Basics/13. TF Classification Exercise.mp48.96MB
  • 6. TensorFlow Basics/14. TF Classification Exercise Solution Walkthrough.mp421.72MB
  • 6. TensorFlow Basics/15. Saving and Restoring Models.mp415.44MB
  • 7. Convolutional Neural Networks/1. Introduction to Convolutional Neural Network Section.mp41.17MB
  • 7. Convolutional Neural Networks/2. Review of Neural Networks.mp43.39MB
  • 7. Convolutional Neural Networks/3. New Theory Topics.mp419.71MB
  • 7. Convolutional Neural Networks/5. MNIST Data Overview.mp46.58MB
  • 7. Convolutional Neural Networks/6. MNIST Basic Approach Part One.mp412.12MB
  • 7. Convolutional Neural Networks/7. MNIST Basic Approach Part Two.mp434.94MB
  • 7. Convolutional Neural Networks/8. CNN Theory Part One.mp426.58MB
  • 7. Convolutional Neural Networks/9. CNN Theory Part Two.mp46.56MB
  • 7. Convolutional Neural Networks/10. CNN MNIST Code Along - Part One.mp426.21MB
  • 7. Convolutional Neural Networks/11. CNN MNIST Code Along - Part Two.mp49.65MB
  • 7. Convolutional Neural Networks/12. Introduction to CNN Project.mp416.06MB
  • 7. Convolutional Neural Networks/13. CNN Project Exercise Solution - Part One.mp450.15MB
  • 7. Convolutional Neural Networks/14. CNN Project Exercise Solution - Part Two.mp427.01MB
  • 8. Recurrent Neural Networks/1. Introduction to RNN Section.mp41.57MB
  • 8. Recurrent Neural Networks/2. RNN Theory.mp410.28MB
  • 8. Recurrent Neural Networks/3. Manual Creation of RNN.mp416.64MB
  • 8. Recurrent Neural Networks/4. Vanishing Gradients.mp46.05MB
  • 8. Recurrent Neural Networks/5. LSTM and GRU Theory.mp412.91MB
  • 8. Recurrent Neural Networks/6. Introduction to RNN with TensorFlow API.mp46.27MB
  • 8. Recurrent Neural Networks/7. RNN with TensorFlow - Part One.mp434.1MB
  • 8. Recurrent Neural Networks/8. RNN with TensorFlow - Part Two.mp430.33MB
  • 8. Recurrent Neural Networks/10. RNN with TensorFlow - Part Three.mp412.68MB
  • 8. Recurrent Neural Networks/11. Time Series Exercise Overview.mp413.65MB
  • 8. Recurrent Neural Networks/12. Time Series Exercise Solution.mp435.12MB
  • 8. Recurrent Neural Networks/13. Quick Note on Word2Vec.mp46.05MB
  • 8. Recurrent Neural Networks/14. Word2Vec Theory.mp416.56MB
  • 8. Recurrent Neural Networks/15. Word2Vec Code Along - Part One.mp435.53MB
  • 8. Recurrent Neural Networks/16. Word2Vec Part Two.mp433.38MB
  • 9. Miscellaneous Topics/2. Deep Nets with Tensorflow Abstractions API - Part One.mp416.25MB
  • 9. Miscellaneous Topics/3. Deep Nets with Tensorflow Abstractions API - Estimator API.mp418.69MB
  • 9. Miscellaneous Topics/4. Deep Nets with Tensorflow Abstractions API - Keras.mp433.37MB
  • 9. Miscellaneous Topics/5. Deep Nets with Tensorflow Abstractions API - Layers.mp428.72MB
  • 9. Miscellaneous Topics/6. Tensorboard.mp439.97MB
  • 10. AutoEncoders/1. Autoencoder Basics.mp413.92MB
  • 10. AutoEncoders/2. Dimensionality Reduction with Linear Autoencoder.mp437.58MB
  • 10. AutoEncoders/3. Linear Autoencoder PCA Exercise Overview.mp46.15MB
  • 10. AutoEncoders/4. Linear Autoencoder PCA Exercise Solutions.mp422.89MB
  • 10. AutoEncoders/5. Stacked Autoencoder.mp443.93MB
  • 11. Reinforcement Learning with OpenAI Gym/1. Introduction to Reinforcement Learning with OpenAI Gym.mp47.99MB
  • 11. Reinforcement Learning with OpenAI Gym/3. Introduction to OpenAI Gym.mp413.95MB
  • 11. Reinforcement Learning with OpenAI Gym/4. OpenAI Gym Steup.mp414.77MB
  • 11. Reinforcement Learning with OpenAI Gym/5. Open AI Gym Env Basics.mp49.97MB
  • 11. Reinforcement Learning with OpenAI Gym/6. Open AI Gym Observations.mp415.36MB
  • 11. Reinforcement Learning with OpenAI Gym/7. OpenAI Gym Actions.mp414.79MB
  • 11. Reinforcement Learning with OpenAI Gym/8. Simple Neural Network Game.mp435.82MB
  • 11. Reinforcement Learning with OpenAI Gym/9. Policy Gradient Theory.mp413.71MB
  • 11. Reinforcement Learning with OpenAI Gym/10. Policy Gradient Code Along Part One.mp426MB
  • 11. Reinforcement Learning with OpenAI Gym/11. Policy Gradient Code Along Part Two.mp432.85MB
  • 12. GAN - Generative Adversarial Networks/1. Introduction to GANs.mp413.49MB
  • 12. GAN - Generative Adversarial Networks/2. GAN Code Along - Part One.mp419.49MB
  • 12. GAN - Generative Adversarial Networks/3. GAN Code Along - Part Two.mp429.28MB
  • 12. GAN - Generative Adversarial Networks/4. GAN Code Along - Part Three.mp427.56MB