种子简介
种子名称:
Machine Learning and AI Foundations - Classification Modeling
文件类型:
视频
文件数目:
31个文件
文件大小:
249.75 MB
收录时间:
2018-12-24 09:00
已经下载:
3次
资源热度:
148
最近下载:
2025-1-8 05:01
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:c603ecb0f78ac9b38623bbfde6e1ba46fc06fac5&dn=Machine Learning and AI Foundations - Classification Modeling
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
Machine Learning and AI Foundations - Classification Modeling.torrent
4.3. Algorithms on Parade/18.Logistic regression.mp424.63MB
1.Introduction/01.Classification problems in machine learning.mp43.9MB
1.Introduction/02.What you should know.mp43.64MB
1.Introduction/03.Defining terms.mp44.95MB
2.1. The Big Picture - Defining Your Classification Strategy/04.The importance of binary classification.mp43.21MB
2.1. The Big Picture - Defining Your Classification Strategy/05.Binary vs. multinomial.mp48.94MB
2.1. The Big Picture - Defining Your Classification Strategy/06.So-called “black box” techniques.mp46.66MB
2.1. The Big Picture - Defining Your Classification Strategy/07.One task, many algorithms.mp48.53MB
2.1. The Big Picture - Defining Your Classification Strategy/08.Statistics vs. machine learning.mp46.68MB
2.1. The Big Picture - Defining Your Classification Strategy/09.Model assessment vs. business evaluation.mp44.87MB
3.2. How Do I Choose a 'Winner'/10.Training and test partitions.mp45.46MB
3.2. How Do I Choose a 'Winner'/11.Lift Charts.mp43.37MB
3.2. How Do I Choose a 'Winner'/12.Gains tables.mp44.46MB
3.2. How Do I Choose a 'Winner'/13.Confusion matrix.mp46.07MB
4.3. Algorithms on Parade/14.Overview.mp43.56MB
4.3. Algorithms on Parade/15.Discriminant with three categories.mp412.15MB
4.3. Algorithms on Parade/16.Discriminant with two categories.mp48.81MB
4.3. Algorithms on Parade/17.Stepwise discriminant.mp41.76MB
4.3. Algorithms on Parade/19.Stepwise logistic regression.mp41.74MB
4.3. Algorithms on Parade/20.Decision Trees.mp49.24MB
4.3. Algorithms on Parade/21.KNN.mp48.88MB
4.3. Algorithms on Parade/22.Linear SVM.mp413.31MB
4.3. Algorithms on Parade/23.Neural nets.mp414.87MB
4.3. Algorithms on Parade/24.Bayesian networks.mp417.7MB
4.3. Algorithms on Parade/25.Ensembles.mp49.42MB
5.4. Common Modeling Challenges/26.Imbalanced target categories.mp45.83MB
5.4. Common Modeling Challenges/27.Interactions.mp48.24MB
5.4. Common Modeling Challenges/28.Missing data.mp46.67MB
5.4. Common Modeling Challenges/29.Bias-variance trade-off and overfitting.mp411.2MB
5.4. Common Modeling Challenges/30.Data reduction.mp415.34MB
6.Conclusion/31.Next steps.mp45.65MB