种子简介
种子名称:
[DesireCourse.Net] Udemy - Advanced AI Deep Reinforcement Learning in Python
文件类型:
视频
文件数目:
73个文件
文件大小:
2.28 GB
收录时间:
2020-1-13 18:44
已经下载:
3次
资源热度:
183
最近下载:
2025-1-19 21:22
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:af0a3b27fb2de5a655be10656280ded35c202b77&dn=[DesireCourse.Net] Udemy - Advanced AI Deep Reinforcement Learning in Python
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[DesireCourse.Net] Udemy - Advanced AI Deep Reinforcement Learning in Python.torrent
1. Introduction and Logistics/1. Introduction and Outline.mp415.84MB
1. Introduction and Logistics/2. Where to get the Code.mp45.19MB
1. Introduction and Logistics/3. How to Succeed in this Course.mp43.3MB
1. Introduction and Logistics/4. Tensorflow or Theano - Your Choice!.mp418.93MB
2. Background Review/1. Review Intro.mp44.2MB
2. Background Review/2. Review of Markov Decision Processes.mp412.3MB
2. Background Review/3. Review of Dynamic Programming.mp46.52MB
2. Background Review/4. Review of Monte Carlo Methods.mp46.18MB
2. Background Review/5. Review of Temporal Difference Learning.mp418.52MB
2. Background Review/6. Review of Approximation Methods for Reinforcement Learning.mp43.67MB
2. Background Review/7. Review of Deep Learning.mp411.05MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/1. OpenAI Gym Tutorial.mp48.67MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/10. Theano Warmup.mp45.83MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/11. Tensorflow Warmup.mp45.06MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/12. Plugging in a Neural Network.mp45.92MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/13. OpenAI Gym Section Summary.mp45.32MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/2. Random Search.mp410.29MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/3. Saving a Video.mp44.55MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/4. CartPole with Bins (Theory).mp46.02MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/5. CartPole with Bins (Code).mp414.7MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/6. RBF Neural Networks.mp416.51MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/7. RBF Networks with Mountain Car (Code).mp413.76MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/8. RBF Networks with CartPole (Theory).mp43.06MB
3. OpenAI Gym and Basic Reinforcement Learning Techniques/9. RBF Networks with CartPole (Code).mp48.92MB
4. TD Lambda/1. N-Step Methods.mp45.03MB
4. TD Lambda/2. N-Step in Code.mp49.47MB
4. TD Lambda/3. TD Lambda.mp411.77MB
4. TD Lambda/4. TD Lambda in Code.mp47.63MB
4. TD Lambda/5. TD Lambda Summary.mp43.65MB
5. Policy Gradients/1. Policy Gradient Methods.mp417.94MB
5. Policy Gradients/10. Policy Gradient Section Summary.mp43.33MB
5. Policy Gradients/2. Policy Gradient in TensorFlow for CartPole.mp417.97MB
5. Policy Gradients/3. Policy Gradient in Theano for CartPole.mp413.44MB
5. Policy Gradients/4. Continuous Action Spaces.mp46.59MB
5. Policy Gradients/5. Mountain Car Continuous Specifics.mp46.51MB
5. Policy Gradients/6. Mountain Car Continuous Theano.mp419.06MB
5. Policy Gradients/7. Mountain Car Continuous Tensorflow.mp420.09MB
5. Policy Gradients/8. Mountain Car Continuous Tensorflow (v2).mp418.78MB
5. Policy Gradients/9. Mountain Car Continuous Theano (v2).mp422.19MB
6. Deep Q-Learning/1. Deep Q-Learning Intro.mp45.9MB
6. Deep Q-Learning/10. Deep Q-Learning Section Summary.mp410.4MB
6. Deep Q-Learning/2. Deep Q-Learning Techniques.mp414.44MB
6. Deep Q-Learning/3. Deep Q-Learning in Tensorflow for CartPole.mp414.98MB
6. Deep Q-Learning/4. Deep Q-Learning in Theano for CartPole.mp413.76MB
6. Deep Q-Learning/5. Additional Implementation Details for Atari.mp48.51MB
6. Deep Q-Learning/6. Pseudocode and Replay Memory.mp427.81MB
6. Deep Q-Learning/7. Deep Q-Learning in Tensorflow for Breakout.mp4234.6MB
6. Deep Q-Learning/8. Deep Q-Learning in Theano for Breakout.mp4233.69MB
6. Deep Q-Learning/9. Partially Observable MDPs.mp47.61MB
7. A3C/1. A3C - Theory and Outline.mp471.76MB
7. A3C/2. A3C - Code pt 1 (Warmup).mp450.09MB
7. A3C/3. A3C - Code pt 2.mp457.61MB
7. A3C/4. A3C - Code pt 3.mp484.52MB
7. A3C/5. A3C - Code pt 4.mp4184.34MB
7. A3C/6. A3C - Section Summary.mp48.85MB
7. A3C/7. Course Summary.mp49.45MB
8. Theano and Tensorflow Basics Review/1. (Review) Theano Basics.mp493.41MB
8. Theano and Tensorflow Basics Review/2. (Review) Theano Neural Network in Code.mp487.01MB
8. Theano and Tensorflow Basics Review/3. (Review) Tensorflow Basics.mp481.42MB
8. Theano and Tensorflow Basics Review/4. (Review) Tensorflow Neural Network in Code.mp497.29MB
9. Appendix FAQ/1. What is the Appendix.mp45.45MB
9. Appendix FAQ/10. Is Theano Dead.mp417.81MB
9. Appendix FAQ/11. What order should I take your courses in (part 1).mp429.32MB
9. Appendix FAQ/12. What order should I take your courses in (part 2).mp437.62MB
9. Appendix FAQ/13. BONUS Where to get Udemy coupons and FREE deep learning material.mp437.84MB
9. Appendix FAQ/2. Windows-Focused Environment Setup 2018.mp4186.16MB
9. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.92MB
9. Appendix FAQ/4. How to Code by Yourself (part 1).mp424.53MB
9. Appendix FAQ/5. How to Code by Yourself (part 2).mp414.8MB
9. Appendix FAQ/6. How to Succeed in this Course (Long Version).mp418.31MB
9. Appendix FAQ/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.95MB
9. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.mp478.24MB
9. Appendix FAQ/9. Python 2 vs Python 3.mp47.83MB