种子简介
种子名称:
[FreeCoursesOnline.Me] [Packt] Building Recommendation Systems with Python [FCO]
文件类型:
视频
文件数目:
25个文件
文件大小:
562.92 MB
收录时间:
2021-2-12 18:05
已经下载:
3次
资源热度:
301
最近下载:
2024-12-30 21:06
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:a1e3ba67cf7d3eea1b7cad43b68094dcbc089c83&dn=[FreeCoursesOnline.Me] [Packt] Building Recommendation Systems with Python [FCO]
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[FreeCoursesOnline.Me] [Packt] Building Recommendation Systems with Python [FCO].torrent
01.Get Started with Text Mining and Cleaning Data/0101.The Course Overview.mp439.39MB
01.Get Started with Text Mining and Cleaning Data/0102.Exploring Recommendation Engines.mp470.49MB
01.Get Started with Text Mining and Cleaning Data/0103.Working with Variables You Are Taking into Consideration.mp48.48MB
01.Get Started with Text Mining and Cleaning Data/0104.Setting Up Your Working Environment.mp416.41MB
01.Get Started with Text Mining and Cleaning Data/0105.Understanding Text Data Source and Variables.mp426.16MB
01.Get Started with Text Mining and Cleaning Data/0106.Imputation Methods for Missing Data.mp415.65MB
02.Collaborative Filtering-Based Recommender System/0201.Understanding Collaborative Filtering.mp45.59MB
02.Collaborative Filtering-Based Recommender System/0202.Exploring the Required Functions – Logic.mp44.08MB
02.Collaborative Filtering-Based Recommender System/0203.Implementation of CF Recommender System.mp45.6MB
02.Collaborative Filtering-Based Recommender System/0204.Applying the CF Algorithm to the IMDBs Dataset.mp49.85MB
02.Collaborative Filtering-Based Recommender System/0205.Evaluating the Collaborative Filtering Recommender.mp49.12MB
03.Content and Popularity Based Recommender Systems/0301.Understanding Content-Based Recommender System.mp46.37MB
03.Content and Popularity Based Recommender Systems/0302.Implementing the Content-Based Recommender System.mp418.87MB
03.Content and Popularity Based Recommender Systems/0303.Understanding Popularity-Based Recommender System.mp410.29MB
03.Content and Popularity Based Recommender Systems/0304.Implementing the Popularity-Based Recommender System.mp49.58MB
03.Content and Popularity Based Recommender Systems/0305.Evaluating Content-Based and Popularity-Based Recommender Systems.mp410.26MB
04.Hybrid Recommender System/0401.Exploring Hybrid Filtering Techniques.mp49.16MB
04.Hybrid Recommender System/0402.Working with the Required Functions – Logic.mp46.93MB
04.Hybrid Recommender System/0403.Algorithm Implementation for Hybrid Recommender System.mp45.11MB
04.Hybrid Recommender System/0404.Implementation of the Hybrid Recommender System.mp415.56MB
04.Hybrid Recommender System/0405.Evaluating the Hybrid Recommender System.mp47.38MB
05.Flask Web Application Using PyCharm/0501.Understanding the Web Framework – Flask.mp48.62MB
05.Flask Web Application Using PyCharm/0502.Setting Up the Integrated Development Environment.mp416.08MB
05.Flask Web Application Using PyCharm/0503.Creating a Web Application Using Flask.mp477.54MB
05.Flask Web Application Using PyCharm/0504.Implementation of a Web Application Using Flask.mp4150.34MB