种子简介
种子名称:
Neural Networks for Machine Learning
文件类型:
文件数目:
78个文件
文件大小:
884.54 MB
收录时间:
2013-1-31 18:52
已经下载:
3次
资源热度:
132
最近下载:
2024-12-28 14:35
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:C44EA3E669C895B7EF510B09CA044C03B500DC8F&dn=Neural Networks for Machine Learning
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
Neural Networks for Machine Learning.torrent
5 - 4 - Convolutional nets for object recognition [17min].mp423.03MB
7 - 1 - Modeling sequences A brief overview.mp420.13MB
14 - 1 - Learning layers of features by stacking RBMs [17 min].mp420.07MB
14 - 5 - OPTIONAL VIDEO RBMs are infinite sigmoid belief nets [17 mins].mp419.44MB
5 - 3 - Convolutional nets for digit recognition [16 min].mp418.46MB
12 - 2 - OPTIONAL VIDEO More efficient ways to get the statistics [15 mins].mp416.93MB
2 - 5 - What perceptrons cant do [15 min].mp416.57MB
8 - 2 - Modeling character strings with multiplicative connections [14 mins].mp416.56MB
8 - 1 - A brief overview of Hessian Free optimization.mp416.24MB
16 - 3 - OPTIONAL Bayesian optimization of hyper-parameters [13 min].mp415.8MB
13 - 4 - The wake-sleep algorithm [13 min].mp415.68MB
10 - 1 - Why it helps to combine models [13 min].mp415.12MB
6 - 5 - Rmsprop Divide the gradient by a running average of its recent magnitude.mp415.12MB
1 - 1 - Why do we need machine learning [13 min].mp415.05MB
10 - 2 - Mixtures of Experts [13 min].mp414.98MB
6 - 2 - A bag of tricks for mini-batch gradient descent.mp414.9MB
13 - 2 - Belief Nets [13 min].mp414.86MB
11 - 1 - Hopfield Nets [13 min].mp414.65MB
4 - 1 - Learning to predict the next word [13 min].mp414.28MB
4 - 5 - Ways to deal with the large number of possible outputs [15 min].mp414.26MB
12 - 1 - Boltzmann machine learning [12 min].mp414.03MB
8 - 3 - Learning to predict the next character using HF [12 mins].mp413.92MB
16 - 1 - OPTIONAL Learning a joint model of images and captions [10 min].mp413.83MB
13 - 3 - Learning sigmoid belief nets [12 min].mp413.59MB
9 - 1 - Overview of ways to improve generalization [12 min].mp413.57MB
3 - 1 - Learning the weights of a linear neuron [12 min].mp413.52MB
3 - 4 - The backpropagation algorithm [12 min].mp413.35MB
11 - 5 - How a Boltzmann machine models data [12 min].mp413.28MB
11 - 2 - Dealing with spurious minima [11 min].mp412.77MB
12 - 3 - Restricted Boltzmann Machines [11 min].mp412.68MB
9 - 5 - The Bayesian interpretation of weight decay [11 min].mp412.27MB
9 - 4 - Introduction to the full Bayesian approach [12 min].mp412MB
13 - 1 - The ups and downs of back propagation [10 min].mp411.83MB
11 - 4 - Using stochastic units to improv search [11 min].mp411.76MB
15 - 5 - Learning binary codes for image retrieval [9 mins].mp411.51MB
11 - 3 - Hopfield nets with hidden units [10 min].mp411.31MB
14 - 2 - Discriminative learning for DBNs [9 mins].mp411.29MB
8 - 4 - Echo State Networks [9 min].mp411.28MB
14 - 4 - Modeling real-valued data with an RBM [10 mins].mp411.2MB
16 - 2 - OPTIONAL Hierarchical Coordinate Frames [10 mins].mp411.16MB
3 - 5 - Using the derivatives computed by backpropagation [10 min].mp411.15MB
15 - 3 - Deep auto encoders for document retrieval [8 mins].mp410.25MB
7 - 5 - Long-term Short-term-memory.mp410.23MB
14 - 3 - What happens during discriminative fine-tuning [8 mins].mp410.17MB
15 - 4 - Semantic Hashing [9 mins].mp49.99MB
1 - 2 - What are neural networks [8 min].mp49.76MB
6 - 3 - The momentum method.mp49.74MB
10 - 5 - Dropout [9 min].mp49.69MB
15 - 1 - From PCA to autoencoders [5 mins].mp49.68MB
6 - 1 - Overview of mini-batch gradient descent.mp49.6MB
12 - 5 - RBMs for collaborative filtering [8 mins].mp49.53MB
2 - 2 - Perceptrons The first generation of neural networks [8 min].mp49.39MB
1 - 3 - Some simple models of neurons [8 min].mp49.26MB
1 - 5 - Three types of learning [8 min].mp48.96MB
4 - 4 - Neuro-probabilistic language models [8 min].mp48.93MB
7 - 4 - Why it is difficult to train an RNN.mp48.89MB
2 - 1 - Types of neural network architectures [7 min].mp48.78MB
12 - 4 - An example of RBM learning [7 mins].mp48.71MB
9 - 3 - Using noise as a regularizer [7 min].mp48.48MB
10 - 3 - The idea of full Bayesian learning [7 min].mp48.39MB
15 - 6 - Shallow autoencoders for pre-training [7 mins].mp48.25MB
10 - 4 - Making full Bayesian learning practical [7 min].mp48.13MB
4 - 3 - Another diversion The softmax output function [7 min].mp48.03MB
9 - 2 - Limiting the size of the weights [6 min].mp47.36MB
7 - 2 - Training RNNs with back propagation.mp47.33MB
2 - 3 - A geometrical view of perceptrons [6 min].mp47.32MB
7 - 3 - A toy example of training an RNN.mp47.24MB
5 - 2 - Achieving viewpoint invariance [6 min].mp46.89MB
6 - 4 - Adaptive learning rates for each connection.mp46.63MB
1 - 4 - A simple example of learning [6 min].mp46.57MB
2 - 4 - Why the learning works [5 min].mp45.9MB
3 - 2 - The error surface for a linear neuron [5 min].mp45.89MB
5 - 1 - Why object recognition is difficult [5 min].mp45.37MB
4 - 2 - A brief diversion into cognitive science [4 min].mp45.31MB
15 - 2 - Deep auto encoders [4 mins].mp44.92MB
9 - 6 - MacKays quick and dirty method of setting weight costs [4 min].mp44.37MB
3 - 3 - Learning the weights of a logistic output neuron [4 min].mp44.37MB
16 - 4 - OPTIONAL The fog of progress [3 min].mp42.78MB