本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCoursesOnline.Me] PacktPub - Hands-On Machine Learning for dotNET Developers

种子简介

种子名称: [FreeCoursesOnline.Me] PacktPub - Hands-On Machine Learning for dotNET Developers
文件类型: 视频
文件数目: 31个文件
文件大小: 436.31 MB
收录时间: 2020-11-22 21:13
已经下载: 3
资源热度: 338
最近下载: 2025-1-7 03:22

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:97794eab6014b24456e47f04ca46bdf4292d8dcc&dn=[FreeCoursesOnline.Me] PacktPub - Hands-On Machine Learning for dotNET Developers 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCoursesOnline.Me] PacktPub - Hands-On Machine Learning for dotNET Developers.torrent
  • 1.Finding the Best Price on Laptops Using Price Prediction (Regression)/01.The Course Overview.mp49.43MB
  • 1.Finding the Best Price on Laptops Using Price Prediction (Regression)/02.Demo of the Application and How to Apply Machine Learning.mp412.28MB
  • 1.Finding the Best Price on Laptops Using Price Prediction (Regression)/03.Installing the ML.NET Model Builder.mp46.75MB
  • 1.Finding the Best Price on Laptops Using Price Prediction (Regression)/04.Automatically Generate a Model with the ML.NET Model Builder.mp47.55MB
  • 1.Finding the Best Price on Laptops Using Price Prediction (Regression)/05.Using the Final Model in the Desktop Application.mp416.03MB
  • 1.Finding the Best Price on Laptops Using Price Prediction (Regression)/06.Generating the Model Using the ML.NET CLI Tool.mp46.99MB
  • 2.Determining Aggression in User Comments/07.Demo of the Web API and the Wikipedia Aggression Dataset.mp46.93MB
  • 2.Determining Aggression in User Comments/08.Digging into the Code Learn What a Training Pipeline Is.mp414.72MB
  • 2.Determining Aggression in User Comments/09.Implementing a Pipeline for the Aggression Scorer.mp417.93MB
  • 2.Determining Aggression in User Comments/10.Using the Custom Model in the Web API.mp421.56MB
  • 3.Evaluating, Improving, and Retraining Your Model/11.Evaluating Your Model.mp417.48MB
  • 3.Evaluating, Improving, and Retraining Your Model/12.Splitting the Data into Training and Test Sets.mp47.5MB
  • 3.Evaluating, Improving, and Retraining Your Model/13.Retraining the Model with More Data.mp418.54MB
  • 3.Evaluating, Improving, and Retraining Your Model/14.Evaluating with Cross-Validation.mp415.98MB
  • 4.Classifying News into Subjects/15.Multiclass Classification and the UCI News Dataset.mp411.68MB
  • 4.Classifying News into Subjects/16.Using AutoML to Find a Suitable Model.mp412.25MB
  • 4.Classifying News into Subjects/17.Building the Pipeline and Evaluating the Performance.mp412.97MB
  • 4.Classifying News into Subjects/18.Explore the Effect of Imbalanced Data on the Metrics.mp415.41MB
  • 5.Building a Recommender System/19.The Restaurant Recommender.mp47.9MB
  • 5.Building a Recommender System/20.Building the Restaurant Recommendation Model.mp411.22MB
  • 5.Building a Recommender System/21.Exploring Hyper Parameters to Improve the Accuracy.mp441.99MB
  • 6.Classifying Images Using TensorFlow 'Transfer Learning'/22.Image Classification and Our Dataset.mp45.85MB
  • 6.Classifying Images Using TensorFlow 'Transfer Learning'/23.Deep Learning and Transferring Learnings from TensorFlow.mp415.32MB
  • 6.Classifying Images Using TensorFlow 'Transfer Learning'/24.Training the Custom Image Classification Model.mp421.35MB
  • 6.Classifying Images Using TensorFlow 'Transfer Learning'/25.Using the Trained Model in the Desktop Application.mp49.51MB
  • 6.Classifying Images Using TensorFlow 'Transfer Learning'/26.Speeding Up Model Training Using the GPU.mp423.97MB
  • 7.Detecting Facial Expressions in Your Webcam with a Pre-Trained ONNX Model/27.What ONNX Is.mp46.2MB
  • 7.Detecting Facial Expressions in Your Webcam with a Pre-Trained ONNX Model/28.The FER+ ONNX Model.mp416.83MB
  • 7.Detecting Facial Expressions in Your Webcam with a Pre-Trained ONNX Model/29.Creating Our ONNX Pipeline.mp412.92MB
  • 7.Detecting Facial Expressions in Your Webcam with a Pre-Trained ONNX Model/30.Detecting Emotions in Images and Webcam.mp421.56MB
  • 7.Detecting Facial Expressions in Your Webcam with a Pre-Trained ONNX Model/31.Saving a ML.NET Model in ONNX Format.mp49.7MB