种子简介
种子名称:
[ FreeCourseWeb.com ] Udemy - Unsupervised Machine Learning with 2 Capstone ML Projects
文件类型:
视频
文件数目:
49个文件
文件大小:
2.67 GB
收录时间:
2021-8-9 19:23
已经下载:
3次
资源热度:
264
最近下载:
2024-12-7 16:43
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:92d3d41cf2341a3af1e0fb26c81e9d9862d8a0e6&dn=[ FreeCourseWeb.com ] Udemy - Unsupervised Machine Learning with 2 Capstone ML Projects
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[ FreeCourseWeb.com ] Udemy - Unsupervised Machine Learning with 2 Capstone ML Projects.torrent
~Get Your Files Here !/1. Introduction to Clustering Analysis/1. Introduction to Clustering.mp457.83MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/10. Introduction to Hierarchical Clustering.mp488.39MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/11. Introduction to Dendrograms.mp441.77MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/12. Implementing Hierarchical Clustering.mp452.37MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/13. Introduction to DBSCAN Clustering.mp475.56MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/14. Implementing DBSCAN Clustering.mp447.84MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/2. Types of Clustering.mp465.27MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/3. Applications of Clustering.mp456MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/4. Using the Elbow Method for Choosing the Best Value for K.mp467.03MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/5. Introduction to K Means Clustering.mp449.3MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/6. Solving a Real World Problem.mp471.08MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/7. Implementing K Means on the Mall Dataset.mp471.63MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/8. Using Silhouette Score to analyze the clusters.mp496.27MB
~Get Your Files Here !/1. Introduction to Clustering Analysis/9. Clustering Multiple Dimensions.mp450.04MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/1. Why High Dimensional Datasets are a Problem.mp479.26MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/10. Introduction the Boruta Algorithm.mp452.48MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/11. Implementing the Boruta Algorithm.mp443.23MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/12. Introduction to Principal Component Analysis.mp473.75MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/13. Implementing PCA.mp455.55MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/14. Introduction to t-SNE.mp481.21MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/15. Implementing t-SNE.mp436.12MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/16. Introduction to Linear Discriminant Analysis.mp448.76MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/17. Implementing LDA.mp436.73MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/18. Difference between PCA, t-SNE, and LDA.mp464.82MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/2. Methods to solve the problem of High Dimensionality.mp457.07MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/3. Solving a Real World Problem.mp498.79MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/4. Introduction to Correlation using Heatmap.mp471.4MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/5. Removing Highly Correlated Columns using Correlation.mp448.89MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/6. Introduction to Variance Inflation Filtering.mp448.66MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/7. Implementing VIF using statsmodel.mp447.86MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/8. Introduction to Recursive Feature Selection.mp456.75MB
~Get Your Files Here !/2. Introduction to Dimensionality Reduction/9. Implementing Recursive Feature Selection.mp450.92MB
~Get Your Files Here !/3. Optimizing Crop Production/1. Setting up the Environment.mp446.44MB
~Get Your Files Here !/3. Optimizing Crop Production/10. Summarizing the Key-Points.mp440.53MB
~Get Your Files Here !/3. Optimizing Crop Production/2. Understanding the Dataset.mp455.08MB
~Get Your Files Here !/3. Optimizing Crop Production/3. Understanding the Problem Statement.mp435.44MB
~Get Your Files Here !/3. Optimizing Crop Production/4. Performing Descriptive Statistics.mp473.45MB
~Get Your Files Here !/3. Optimizing Crop Production/5. Analyzing Agricultural Conditions.mp439.12MB
~Get Your Files Here !/3. Optimizing Crop Production/6. Clustering Similar Crops.mp463.64MB
~Get Your Files Here !/3. Optimizing Crop Production/7. Visualizing the Hidden Patterns.mp427.81MB
~Get Your Files Here !/3. Optimizing Crop Production/8. Building a Machine Learning Classification Model.mp440.37MB
~Get Your Files Here !/3. Optimizing Crop Production/9. Real Time Predictions.mp427.66MB
~Get Your Files Here !/4. Customer Segmentation Engine/1. Understanding the Problem Statement.mp453.54MB
~Get Your Files Here !/4. Customer Segmentation Engine/2. Setting up the Environment.mp428.83MB
~Get Your Files Here !/4. Customer Segmentation Engine/3. Data Analysis and Visualization.mp477.72MB
~Get Your Files Here !/4. Customer Segmentation Engine/4. KMeans Clustering Analysis.mp461.8MB
~Get Your Files Here !/4. Customer Segmentation Engine/5. Applying Hierarchical Clustering.mp440.77MB
~Get Your Files Here !/4. Customer Segmentation Engine/6. Three Dimensional Clustering.mp436.74MB
~Get Your Files Here !/5. Outro Section/1. Conclusion.mp446.31MB