种子简介
种子名称:
[Tutorialsplanet.NET] Udemy - Ensemble Machine Learning in Python Random Forest, AdaBoost
文件类型:
视频
文件数目:
43个文件
文件大小:
884.95 MB
收录时间:
2020-8-28 02:03
已经下载:
3次
资源热度:
169
最近下载:
2025-3-18 22:20
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:8ea0519a2cee0e70e538801c2ece955924de2341&dn=[Tutorialsplanet.NET] Udemy - Ensemble Machine Learning in Python Random Forest, AdaBoost
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[Tutorialsplanet.NET] Udemy - Ensemble Machine Learning in Python Random Forest, AdaBoost.torrent
1. Get Started/1. Outline and Motivation.mp47.19MB
1. Get Started/2. Where to get the Code and Data.mp43.36MB
1. Get Started/3. All Data is the Same.mp45.24MB
1. Get Started/4. Plug-and-Play.mp43.5MB
10. Appendix FAQ/1. What is the Appendix.mp45.46MB
10. Appendix FAQ/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp437.84MB
2. Bias-Variance Trade-Off/1. Bias-Variance Key Terms.mp410.24MB
2. Bias-Variance Trade-Off/2. Bias-Variance Trade-Off.mp44.89MB
2. Bias-Variance Trade-Off/3. Bias-Variance Decomposition.mp414.3MB
2. Bias-Variance Trade-Off/4. Polynomial Regression Demo.mp441.76MB
2. Bias-Variance Trade-Off/5. K-Nearest Neighbor and Decision Tree Demo.mp413.86MB
2. Bias-Variance Trade-Off/6. Cross-Validation as a Method for Optimizing Model Complexity.mp46.98MB
2. Bias-Variance Trade-Off/7. Suggestion Box.mp416.12MB
3. Bootstrap Estimates and Bagging/1. Bootstrap Estimation.mp447.73MB
3. Bootstrap Estimates and Bagging/2. Bootstrap Demo.mp410.96MB
3. Bootstrap Estimates and Bagging/3. Bagging.mp43.93MB
3. Bootstrap Estimates and Bagging/4. Bagging Regression Trees.mp415.88MB
3. Bootstrap Estimates and Bagging/5. Bagging Classification Trees.mp420.32MB
3. Bootstrap Estimates and Bagging/6. Stacking.mp46.08MB
4. Random Forest/1. Random Forest Algorithm.mp414.43MB
4. Random Forest/2. Random Forest Regressor.mp414.9MB
4. Random Forest/3. Random Forest Classifier.mp412.58MB
4. Random Forest/4. Random Forest vs Bagging Trees.mp47.82MB
4. Random Forest/5. Implementing a Not as Random Forest.mp48.69MB
4. Random Forest/6. Connection to Deep Learning Dropout.mp44.22MB
5. AdaBoost/1. AdaBoost Algorithm.mp410.88MB
5. AdaBoost/2. Additive Modeling.mp42.81MB
5. AdaBoost/3. AdaBoost Loss Function Exponential Loss.mp411.19MB
5. AdaBoost/4. AdaBoost Implementation.mp415.79MB
5. AdaBoost/5. Comparison to Stacking.mp45.44MB
5. AdaBoost/6. Connection to Deep Learning.mp46.03MB
5. AdaBoost/7. Summary and What's Next.mp47.37MB
6. Background Review/1. Confidence Intervals.mp412.6MB
7. Setting Up Your Environment/1. Windows-Focused Environment Setup 2018.mp4186.3MB
7. Setting Up Your Environment/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.92MB
8. Extra Help With Python Coding for Beginners/1. How to Code by Yourself (part 1).mp424.54MB
8. Extra Help With Python Coding for Beginners/2. How to Code by Yourself (part 2).mp414.8MB
8. Extra Help With Python Coding for Beginners/3. Proof that using Jupyter Notebook is the same as not using it.mp478.26MB
8. Extra Help With Python Coding for Beginners/4. Python 2 vs Python 3.mp47.83MB
9/1. How to Succeed in this Course (Long Version).mp413MB
9/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.96MB
9/3. What order should I take your courses in (part 1).mp429.33MB
9/4. What order should I take your courses in (part 2).mp437.63MB