本站已收录 番号和无损神作磁力链接/BT种子 

[Manning] Data science bookcamp (hevc) (2021) [EN]

种子简介

种子名称: [Manning] Data science bookcamp (hevc) (2021) [EN]
文件类型: 视频
文件数目: 128个文件
文件大小: 610.43 MB
收录时间: 2025-4-20 20:02
已经下载: 3
资源热度: 16
最近下载: 2025-4-28 22:43

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:89f00911282dc5d5b4804682bf1443ce1e98c8b1&dn=[Manning] Data science bookcamp (hevc) (2021) [EN] 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[Manning] Data science bookcamp (hevc) (2021) [EN].torrent
  • 001 Case study 1 - Finding the winning strategy in a card game.m4v785.75KB
  • 002 Ch1. Computing probabilities using Python This section covers.m4v5.62MB
  • 003 Ch1. Problem 2 - Analyzing multiple die rolls.m4v6.17MB
  • 004 Ch2. Plotting probabilities using Matplotlib.m4v5.76MB
  • 005 Ch2. Comparing multiple coin-flip probability distributions.m4v6.27MB
  • 006 Ch3. Running random simulations in NumPy.m4v3.71MB
  • 007 Ch3. Computing confidence intervals using histograms and NumPy arrays.m4v5.09MB
  • 008 Ch3. Deriving probabilities from histograms.m4v5.59MB
  • 009 Ch3. Computing histograms in NumPy.m4v5.19MB
  • 010 Ch3. Using permutations to shuffle cards.m4v3.59MB
  • 011 Ch4. Case study 1 solution.m4v3.68MB
  • 012 Ch4. Optimizing strategies using the sample space for a 10-card deck.m4v3.93MB
  • 013 Case study 2 - Assessing online ad clicks for significance.m4v2.92MB
  • 014 Ch5. Basic probability and statistical analysis using SciPy.m4v6.13MB
  • 015 Ch5. Mean as a measure of centrality.m4v4.7MB
  • 016 Ch5. Variance as a measure of dispersion.m4v6.72MB
  • 017 Ch6. Making predictions using the central limit theorem and SciPy.m4v5.06MB
  • 018 Ch6. Comparing two sampled normal curves.m4v3.57MB
  • 019 Ch6. Determining the mean and variance of a population through random sampling.m4v5.59MB
  • 020 Ch6. Computing the area beneath a normal curve.m4v5.64MB
  • 021 Ch7. Statistical hypothesis testing.m4v3.79MB
  • 022 Ch7. Assessing the divergence between sample mean and population mean.m4v4.83MB
  • 023 Ch7. Data dredging - Coming to false conclusions through oversampling.m4v5.85MB
  • 024 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 1.m4v4.65MB
  • 025 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 2.m4v4.71MB
  • 026 Ch7. Permutation testing - Comparing means of samples when the population parameters are unknown.m4v4.14MB
  • 027 Ch8. Analyzing tables using Pandas.m4v4.89MB
  • 028 Ch8. Retrieving table rows.m4v4.33MB
  • 029 Ch8. Saving and loading table data.m4v3.8MB
  • 030 Ch9. Case study 2 solution.m4v3.56MB
  • 031 Ch9. Determining statistical significance.m4v3.82MB
  • 032 Case study 3 - Tracking disease outbreaks using news headlines.m4v772.36KB
  • 033 Ch10. Clustering data into groups.m4v5.87MB
  • 034 Ch10. K-means - A clustering algorithm for grouping data into K central groups.m4v5.73MB
  • 035 Ch10. Using density to discover clusters.m4v4.96MB
  • 036 Ch10. Clustering based on non-Euclidean distance.m4v4.87MB
  • 037 Ch10. Analyzing clusters using Pandas.m4v3.06MB
  • 038 Ch11. Geographic location visualization and analysis.m4v4.49MB
  • 039 Ch11. Plotting maps using Cartopy.m4v3.3MB
  • 040 Ch11. Visualizing maps.m4v6.38MB
  • 041 Ch11. Location tracking using GeoNamesCache.m4v6.02MB
  • 042 Ch11. Limitations of the GeoNamesCache library.m4v6.63MB
  • 043 Ch12. Case study 3 solution.m4v3.68MB
  • 044 Ch12. Visualizing and clustering the extracted location data.m4v6.68MB
  • 045 Case study 4 - Using online job postings to improve your data science resume.m4v2.35MB
  • 046 Ch13. Measuring text similarities.m4v3.73MB
  • 047 Ch13. Simple text comparison.m4v4.82MB
  • 048 Ch13. Replacing words with numeric values.m4v4.44MB
  • 049 Ch13. Vectorizing texts using word counts.m4v4.67MB
  • 050 Ch13. Using normalization to improve TF vector similarity.m4v4.32MB
  • 051 Ch13. Using unit vector dot products to convert between relevance metrics.m4v3.99MB
  • 052 Ch13. Basic matrix operations, Part 1.m4v5.3MB
  • 053 Ch13. Basic matrix operations, Part 2.m4v3.4MB
  • 054 Ch13. Computational limits of matrix multiplication.m4v4.47MB
  • 055 Ch14. Dimension reduction of matrix data.m4v5.47MB
  • 056 Ch14. Reducing dimensions using rotation, Part 1.m4v4.04MB
  • 057 Ch14. Reducing dimensions using rotation, Part 2.m4v3.56MB
  • 058 Ch14. Dimension reduction using PCA and scikit-learn.m4v6.43MB
  • 059 Ch14. Clustering 4D data in two dimensions.m4v4.85MB
  • 060 Ch14. Limitations of PCA.m4v3.12MB
  • 061 Ch14. Computing principal components without rotation.m4v4.7MB
  • 062 Ch14. Extracting eigenvectors using power iteration, Part 1.m4v4.38MB
  • 063 Ch14. Extracting eigenvectors using power iteration, Part 2.m4v3.5MB
  • 064 Ch14. Efficient dimension reduction using SVD and scikit-learn.m4v5.18MB
  • 065 Ch15. NLP analysis of large text datasets.m4v4.49MB
  • 066 Ch15. Vectorizing documents using scikit-learn.m4v7.16MB
  • 067 Ch15. Ranking words by both post frequency and count, Part 1.m4v4.98MB
  • 068 Ch15. Ranking words by both post frequency and count, Part 2.m4v4.57MB
  • 069 Ch15. Computing similarities across large document datasets.m4v5.26MB
  • 070 Ch15. Clustering texts by topic, Part 1.m4v6.09MB
  • 071 Ch15. Clustering texts by topic, Part 2.m4v6.87MB
  • 072 Ch15. Visualizing text clusters.m4v5.66MB
  • 073 Ch15. Using subplots to display multiple word clouds, Part 1.m4v4.17MB
  • 074 Ch15. Using subplots to display multiple word clouds, Part 2.m4v4.37MB
  • 075 Ch16. Extracting text from web pages.m4v4.04MB
  • 076 Ch16. The structure of HTML documents.m4v5.34MB
  • 077 Ch16. Parsing HTML using Beautiful Soup, Part 1.m4v4.44MB
  • 078 Ch16. Parsing HTML using Beautiful Soup, Part 2.m4v3.78MB
  • 079 Ch17. Case study 4 solution.m4v3.56MB
  • 080 Ch17. Exploring the HTML for skill descriptions.m4v4.71MB
  • 081 Ch17. Filtering jobs by relevance.m4v7MB
  • 082 Ch17. Clustering skills in relevant job postings.m4v6.2MB
  • 083 Ch17. Investigating the technical skill clusters.m4v4.13MB
  • 084 Ch17. Exploring clusters at alternative values of K.m4v5.22MB
  • 085 Ch17. Analyzing the 700 most relevant postings.m4v3.73MB
  • 086 Case study 5 - Predicting future friendships from social network data.m4v6.84MB
  • 087 Ch18. An introduction to graph theory and network analysis.m4v6.05MB
  • 088 Ch18. Analyzing web networks using NetworkX, Part 1.m4v3.88MB
  • 089 Ch18. Analyzing web networks using NetworkX, Part 2.m4v4.64MB
  • 090 Ch18. Utilizing undirected graphs to optimize the travel time between towns.m4v5.65MB
  • 091 Ch18. Computing the fastest travel time between nodes, Part 1.m4v3.13MB
  • 092 Ch18. Computing the fastest travel time between nodes, Part 2.m4v4.11MB
  • 093 Ch19. Dynamic graph theory techniques for node ranking and social network analysis.m4v6.71MB
  • 094 Ch19. Computing travel probabilities using matrix multiplication.m4v3.58MB
  • 095 Ch19. Deriving PageRank centrality from probability theory.m4v4.29MB
  • 096 Ch19. Computing PageRank centrality using NetworkX.m4v3.85MB
  • 097 Ch19. Community detection using Markov clustering, Part 1.m4v5.93MB
  • 098 Ch19. Community detection using Markov clustering, Part 2.m4v6.74MB
  • 099 Ch19. Uncovering friend groups in social networks.m4v4.77MB
  • 100 Ch20. Network-driven supervised machine learning.m4v4.33MB
  • 101 Ch20. The basics of supervised machine learning.m4v4.29MB
  • 102 Ch20. Measuring predicted label accuracy, Part 1.m4v4.74MB
  • 103 Ch20. Measuring predicted label accuracy, Part 2.m4v5.44MB
  • 104 Ch20. Optimizing KNN performance.m4v3.89MB
  • 105 Ch20. Running a grid search using scikit-learn.m4v4.26MB
  • 106 Ch20. Limitations of the KNN algorithm.m4v4.88MB
  • 107 Ch21. Training linear classifiers with logistic regression.m4v5.63MB
  • 108 Ch21. Training a linear classifier, Part 1.m4v4.74MB
  • 109 Ch21. Training a linear classifier, Part 2.m4v6.3MB
  • 110 Ch21. Improving linear classification with logistic regression, Part 1.m4v4.26MB
  • 111 Ch21. Improving linear classification with logistic regression, Part 2.m4v3.88MB
  • 112 Ch21. Training linear classifiers using scikit-learn.m4v4.75MB
  • 113 Ch21. Measuring feature importance with coefficients.m4v7.38MB
  • 114 Ch22. Training nonlinear classifiers with decision tree techniques.m4v6.36MB
  • 115 Ch22. Training a nested if_else model using two features.m4v5.34MB
  • 116 Ch22. Deciding which feature to split on.m4v5.96MB
  • 117 Ch22. Training if_else models with more than two features.m4v5.38MB
  • 118 Ch22. Training decision tree classifiers using scikit-learn.m4v4.95MB
  • 119 Ch22. Studying cancerous cells using feature importance.m4v5.41MB
  • 120 Ch22. Improving performance using random forest classification.m4v5.12MB
  • 121 Ch22. Training random forest classifiers using scikit-learn.m4v4.31MB
  • 122 Ch23. Case study 5 solution.m4v3.61MB
  • 123 Ch23. Exploring the experimental observations.m4v4.09MB
  • 124 Ch23. Training a predictive model using network features, Part 1.m4v3.98MB
  • 125 Ch23. Training a predictive model using network features, Part 2.m4v4.13MB
  • 126 Ch23. Adding profile features to the model.m4v5.21MB
  • 127 Ch23. Optimizing performance across a steady set of features.m4v4.03MB
  • 128 Ch23. Interpreting the trained model.m4v4.55MB