种子简介
种子名称:
[FreeCoursesOnline.Me] Coursera - Deep Learning in Computer Vision
文件类型:
视频
文件数目:
51个文件
文件大小:
1.12 GB
收录时间:
2018-9-21 02:57
已经下载:
3次
资源热度:
117
最近下载:
2024-10-31 21:25
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:89972431050503e9523138b7544b420a089a8691&dn=[FreeCoursesOnline.Me] Coursera - Deep Learning in Computer Vision
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[FreeCoursesOnline.Me] Coursera - Deep Learning in Computer Vision.torrent
001.Introduction and digital images/001. Short introduction to computer vision.mp415.33MB
001.Introduction and digital images/002. Digital images.mp412.19MB
001.Introduction and digital images/003. Structure of human eye and vision.mp422.27MB
001.Introduction and digital images/004. Color models.mp457.71MB
002.Basic image processing/005. Image processing goals and tasks.mp410.78MB
002.Basic image processing/006. Contrast and brightness correction.mp419.67MB
002.Basic image processing/007. Image convolution.mp426.04MB
002.Basic image processing/008. Edge detection.mp431.89MB
003.Image classification/009. Recap Image classification.mp432.43MB
003.Image classification/010. AlexNet, VGG and Inception architectures.mp443.84MB
003.Image classification/011. ResNet and beyond.mp443.16MB
003.Image classification/012. Fine-grained image recognition.mp425.35MB
003.Image classification/013. Detection and classification of facial attributes.mp424.08MB
004.Content-based image retrieval/014. Content-based image retrieval.mp431.59MB
004.Content-based image retrieval/015. Computing semantic image embeddings using convolutional neural networks.mp435.61MB
004.Content-based image retrieval/016. Employing indexing structures for efficient retrieval of semantic neighbors.mp437.34MB
004.Content-based image retrieval/017. Face verification.mp425.18MB
004.Content-based image retrieval/018. The re-identification problem in computer vision.mp421.1MB
005.Keypoints regression/019. Facial keypoints regression.mp425.6MB
005.Keypoints regression/020. CNN for keypoints regression.mp423.24MB
006.Sliding window detectors/021. Object detection problem.mp422.44MB
006.Sliding window detectors/022. Sliding windows.mp411.75MB
006.Sliding window detectors/023. HOG-based detector.mp49.14MB
006.Sliding window detectors/024. Detector training.mp411.72MB
006.Sliding window detectors/025. Viola-Jones face detector.mp419.45MB
006.Sliding window detectors/026. Attentional cascades and neural networks.mp412.22MB
007.Modern detector architectures/027. Region-based convolutional neural network.mp410.69MB
007.Modern detector architectures/028. From R-CNN to Fast R-CNN.mp417.8MB
007.Modern detector architectures/029. Faster R-CNN.mp415.76MB
007.Modern detector architectures/030. Region-based fully-convolutional network.mp48.52MB
007.Modern detector architectures/031. Single shot detectors.mp414.47MB
007.Modern detector architectures/032. Speed vs. accuracy tradeoff.mp47.06MB
007.Modern detector architectures/033. Fun with pedestrian detectors.mp45.84MB
008.Object tracking/034. Introduction to video analysis.mp412.65MB
008.Object tracking/035. Optical flow.mp417.35MB
008.Object tracking/036. Deep learning in optical flow estimation.mp419MB
008.Object tracking/037. Visual object tracking.mp418.75MB
008.Object tracking/038. Examples of visual object tracking methods.mp442.92MB
008.Object tracking/039. Multiple object tracking.mp418.16MB
008.Object tracking/040. Examples of multiple object tracking methods.mp426.34MB
009.Action recognition/041. Introduction to action recognition.mp421.89MB
009.Action recognition/042. Action classification.mp426.62MB
009.Action recognition/043. Action classification with convolutional neural networks.mp418.79MB
009.Action recognition/044. Action localization.mp422.39MB
010.Image segmentation/045. Image segmentation.mp416.02MB
010.Image segmentation/046. Oversegmentation.mp417.84MB
010.Image segmentation/047. Deep learning models for image segmentation.mp432.72MB
010.Image segmentation/048. Human pose estimation as image segmentation.mp433.42MB
011.Style transfer and image generation/049. Style transfer.mp422.66MB
011.Style transfer and image generation/050. Generative adversarial networks.mp429.46MB
011.Style transfer and image generation/051. Image transformation with neural networks.mp422.74MB