种子简介
种子名称:
Accelerating TensorFlow with the Google Machine Learning Engine
文件类型:
视频
文件数目:
42个文件
文件大小:
340.01 MB
收录时间:
2021-10-24 18:19
已经下载:
3次
资源热度:
269
最近下载:
2025-3-11 03:36
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:799e10cf8934a798bb28da19d7d7968ebf10258a&dn=Accelerating TensorFlow with the Google Machine Learning Engine
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
Accelerating TensorFlow with the Google Machine Learning Engine.torrent
3.3. Training TensorFlow Applications/18.Linear regression in code - Part 2.mp422.14MB
0.Introduction/01.Welcome.mp44.87MB
0.Introduction/02.What you should know.mp42.64MB
0.Introduction/03.Using the exercise files.mp42.12MB
1.1. Introducing TensorFlow/04.Overview and installation.mp45.19MB
1.1. Introducing TensorFlow/05.Getting started.mp43.67MB
1.1. Introducing TensorFlow/06.Running a simple application.mp45.92MB
2.2. Fundamentals of TensorFlow Development/07.Creating tensors.mp46.23MB
2.2. Fundamentals of TensorFlow Development/08.Basic tensor operations.mp44.28MB
2.2. Fundamentals of TensorFlow Development/09.Advanced tensor operations.mp44.14MB
2.2. Fundamentals of TensorFlow Development/10.Understanding graphs and sessions.mp45.12MB
2.2. Fundamentals of TensorFlow Development/11.Accessing graphs and sessions in code.mp49.42MB
3.3. Training TensorFlow Applications/12.Variables and logging.mp47.16MB
3.3. Training TensorFlow Applications/13.Using variables in code.mp45.94MB
3.3. Training TensorFlow Applications/14.Using optimizers.mp49.73MB
3.3. Training TensorFlow Applications/15.Simple optimizer example.mp410.04MB
3.3. Training TensorFlow Applications/16.Batches and placeholders.mp45.37MB
3.3. Training TensorFlow Applications/17.Linear regression in code - Part 1.mp46.12MB
3.3. Training TensorFlow Applications/19.TensorBoard.mp45.28MB
3.3. Training TensorFlow Applications/20.Using TensorBoard in practice.mp413.05MB
4.4. Accessing Data with Datasets/21.Datasets and iterators.mp48.7MB
4.4. Accessing Data with Datasets/22.Coding with datasets and iterators.mp412.35MB
4.4. Accessing Data with Datasets/23.Dataset operations.mp47.61MB
4.4. Accessing Data with Datasets/24.Creating datasets from files.mp48.27MB
4.4. Accessing Data with Datasets/25.Introducing MNIST images.mp45.42MB
4.4. Accessing Data with Datasets/26.Reading MNIST data in code.mp414.41MB
5.5. Machine Learning with Estimators/27.Understanding estimators.mp48.49MB
5.5. Machine Learning with Estimators/28.Describing data with feature columns.mp49.37MB
5.5. Machine Learning with Estimators/29.Coding a simple estimator - Part 1.mp47.06MB
5.5. Machine Learning with Estimators/30.Coding a simple estimator - Part 2.mp410.5MB
5.5. Machine Learning with Estimators/31.Estimators and neural networks.mp46.17MB
5.5. Machine Learning with Estimators/32.Coding a DNN estimator - Part 1.mp415.37MB
5.5. Machine Learning with Estimators/33.Coding a DNN estimator - Part 2.mp416.92MB
5.5. Machine Learning with Estimators/34.Automating estimator operation.mp45.42MB
5.5. Machine Learning with Estimators/35.Estimator automation in practice.mp415.87MB
6.6. Deploying Estimators to the Machine Learning Engine/36.Creating a GCP project.mp49.1MB
6.6. Deploying Estimators to the Machine Learning Engine/37.Installing the Cloud SDK.mp48.39MB
6.6. Deploying Estimators to the Machine Learning Engine/38.Introduction to Google Cloud Storage.mp44.58MB
6.6. Deploying Estimators to the Machine Learning Engine/39.Accessing Cloud Storage in practice.mp45.93MB
6.6. Deploying Estimators to the Machine Learning Engine/40.Machine Learning Engine.mp46.11MB
6.6. Deploying Estimators to the Machine Learning Engine/41.Deploying jobs to ML Engine.mp412.1MB
7.Conclusion/42.Next steps.mp43.44MB