本站已收录 番号和无损神作磁力链接/BT种子 

[DesireCourse.Com] Udemy - Learning Python for Data Analysis and Visualization

种子简介

种子名称: [DesireCourse.Com] Udemy - Learning Python for Data Analysis and Visualization
文件类型: 视频
文件数目: 107个文件
文件大小: 1.91 GB
收录时间: 2019-6-3 15:16
已经下载: 3
资源热度: 192
最近下载: 2025-1-21 01:18

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:73159cc0e5283b03f0d48ed5d20f444a373359f7&dn=[DesireCourse.Com] Udemy - Learning Python for Data Analysis and Visualization 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[DesireCourse.Com] Udemy - Learning Python for Data Analysis and Visualization.torrent
  • 1. Intro to Course and Python/1. Course Intro.mp45.9MB
  • 10. Machine Learning/1. Introduction to Machine Learning with SciKit Learn.mp417.93MB
  • 10. Machine Learning/10. Multi Class Classification Part 1 - Logistic Regression.mp426.81MB
  • 10. Machine Learning/11. Multi Class Classification Part 2 - k Nearest Neighbor.mp430.63MB
  • 10. Machine Learning/12. Support Vector Machines Part 1.mp423.54MB
  • 10. Machine Learning/13. Support Vector Machines - Part 2.mp435.95MB
  • 10. Machine Learning/14. Naive Bayes Part 1.mp414.05MB
  • 10. Machine Learning/15. Naive Bayes Part 2.mp423.24MB
  • 10. Machine Learning/16. Decision Trees and Random Forests.mp4152.94MB
  • 10. Machine Learning/17. Natural Language Processing Part 1.mp443.88MB
  • 10. Machine Learning/18. Natural Language Processing Part 2.mp459.74MB
  • 10. Machine Learning/19. Natural Language Processing Part 3.mp492.56MB
  • 10. Machine Learning/2. Linear Regression Part 1.mp424.17MB
  • 10. Machine Learning/20. Natural Language Processing Part 4.mp467.12MB
  • 10. Machine Learning/3. Linear Regression Part 2.mp422.46MB
  • 10. Machine Learning/4. Linear Regression Part 3.mp427.19MB
  • 10. Machine Learning/5. Linear Regression Part 4.mp430.87MB
  • 10. Machine Learning/6. Logistic Regression Part 1.mp425.03MB
  • 10. Machine Learning/7. Logistic Regression Part 2.mp420.8MB
  • 10. Machine Learning/8. Logistic Regression Part 3.mp416.54MB
  • 10. Machine Learning/9. Logistic Regression Part 4.mp435.26MB
  • 11. Appendix Statistics Overview/1. Intro to Appendix B.mp42.97MB
  • 11. Appendix Statistics Overview/10. Chi Square Test and Distribution.mp45.61MB
  • 11. Appendix Statistics Overview/11. Bayes Theorem.mp414.47MB
  • 11. Appendix Statistics Overview/2. Discrete Uniform Distribution.mp48.67MB
  • 11. Appendix Statistics Overview/3. Continuous Uniform Distribution.mp49.87MB
  • 11. Appendix Statistics Overview/4. Binomial Distribution.mp417.02MB
  • 11. Appendix Statistics Overview/5. Poisson Distribution.mp416MB
  • 11. Appendix Statistics Overview/6. Normal Distribution.mp48.29MB
  • 11. Appendix Statistics Overview/7. Sampling Techniques.mp48.13MB
  • 11. Appendix Statistics Overview/8. T-Distribution.mp46.66MB
  • 11. Appendix Statistics Overview/9. Hypothesis Testing and Confidence Intervals.mp430.69MB
  • 12. Appendix SQL and Python/1. Introduction to SQL with Python.mp416.4MB
  • 12. Appendix SQL and Python/2. SQL - SELECT,DISTINCT,WHERE,AND & OR.mp413.46MB
  • 12. Appendix SQL and Python/3. SQL WILDCARDS, ORDER BY, GROUP BY and Aggregate Functions.mp411.72MB
  • 13. Appendix Web Scraping with Python/1. Web Scraping Part 1.mp414.54MB
  • 13. Appendix Web Scraping with Python/2. Web Scraping Part 2.mp417.38MB
  • 14. Appendix Python Special Offers/1. Python Overview Part 1.mp417.4MB
  • 14. Appendix Python Special Offers/2. Python Overview Part 2.mp411.08MB
  • 14. Appendix Python Special Offers/3. Python Overview Part 3.mp49.82MB
  • 2. Setup/1. Installation Setup and Overview.mp424.37MB
  • 2. Setup/2. IDEs and Course Resources.mp430.35MB
  • 2. Setup/3. iPythonJupyter Notebook Overview.mp439.45MB
  • 3. Learning Numpy/2. Creating arrays.mp46.7MB
  • 3. Learning Numpy/3. Using arrays and scalars.mp44.09MB
  • 3. Learning Numpy/4. Indexing Arrays.mp413.27MB
  • 3. Learning Numpy/5. Array Transposition.mp43.73MB
  • 3. Learning Numpy/6. Universal Array Function.mp46.39MB
  • 3. Learning Numpy/7. Array Processing.mp420.53MB
  • 3. Learning Numpy/8. Array Input and Output.mp47.1MB
  • 4. Intro to Pandas/1. Series.mp412.59MB
  • 4. Intro to Pandas/10. Missing Data.mp49.93MB
  • 4. Intro to Pandas/11. Index Hierarchy.mp412.21MB
  • 4. Intro to Pandas/2. DataFrames.mp421.85MB
  • 4. Intro to Pandas/3. Index objects.mp44.6MB
  • 4. Intro to Pandas/4. Reindex.mp415.83MB
  • 4. Intro to Pandas/5. Drop Entry.mp45.01MB
  • 4. Intro to Pandas/6. Selecting Entries.mp49.56MB
  • 4. Intro to Pandas/7. Data Alignment.mp49.53MB
  • 4. Intro to Pandas/8. Rank and Sort.mp44.87MB
  • 4. Intro to Pandas/9. Summary Statistics.mp421.95MB
  • 5. Working with Data Part 1/1. Reading and Writing Text Files.mp410.4MB
  • 5. Working with Data Part 1/2. JSON with Python.mp44.27MB
  • 5. Working with Data Part 1/3. HTML with Python.mp45.72MB
  • 5. Working with Data Part 1/4. Microsoft Excel files with Python.mp43.66MB
  • 6. Working with Data Part 2/1. Merge.mp418.58MB
  • 6. Working with Data Part 2/10. Rename Index.mp45.23MB
  • 6. Working with Data Part 2/11. Binning.mp46.25MB
  • 6. Working with Data Part 2/12. Outliers.mp47.52MB
  • 6. Working with Data Part 2/13. Permutation.mp44.57MB
  • 6. Working with Data Part 2/2. Merge on Index.mp412.31MB
  • 6. Working with Data Part 2/3. Concatenate.mp49.76MB
  • 6. Working with Data Part 2/4. Combining DataFrames.mp49.65MB
  • 6. Working with Data Part 2/5. Reshaping.mp47.11MB
  • 6. Working with Data Part 2/6. Pivoting.mp47.13MB
  • 6. Working with Data Part 2/7. Duplicates in DataFrames.mp45.46MB
  • 6. Working with Data Part 2/8. Mapping.mp43.86MB
  • 6. Working with Data Part 2/9. Replace.mp42.71MB
  • 7. Working with Data Part 3/1. GroupBy on DataFrames.mp417.17MB
  • 7. Working with Data Part 3/2. GroupBy on Dict and Series.mp411.84MB
  • 7. Working with Data Part 3/3. Aggregation.mp418.65MB
  • 7. Working with Data Part 3/4. Splitting Applying and Combining.mp410.58MB
  • 7. Working with Data Part 3/5. Cross Tabulation.mp44.51MB
  • 8. Data Visualization/1. Installing Seaborn.mp42.4MB
  • 8. Data Visualization/2. Histograms.mp49.38MB
  • 8. Data Visualization/3. Kernel Density Estimate Plots.mp427.03MB
  • 8. Data Visualization/4. Combining Plot Styles.mp45.72MB
  • 8. Data Visualization/5. Box and Violin Plots.mp48.7MB
  • 8. Data Visualization/6. Regression Plots.mp417.42MB
  • 8. Data Visualization/7. Heatmaps and Clustered Matrices.mp418.26MB
  • 9. Example Projects/1. Data Projects Preview.mp425.8MB
  • 9. Example Projects/10. Data Project - Stock Market Analysis Part 3.mp416.61MB
  • 9. Example Projects/11. Data Project - Stock Market Analysis Part 4.mp49.8MB
  • 9. Example Projects/12. Data Project - Stock Market Analysis Part 5.mp436.83MB
  • 9. Example Projects/13. Data Project - Intro to Election Analysis.mp414.91MB
  • 9. Example Projects/14. Data Project - Election Analysis Part 1.mp419.41MB
  • 9. Example Projects/15. Data Project - Election Analysis Part 2.mp424.9MB
  • 9. Example Projects/16. Data Project - Election Analysis Part 3.mp417.12MB
  • 9. Example Projects/17. Data Project - Election Analysis Part 4.mp482.1MB
  • 9. Example Projects/2. Intro to Data Projects.mp46.66MB
  • 9. Example Projects/3. Titanic Project - Part 1.mp418.82MB
  • 9. Example Projects/4. Titanic Project - Part 2.mp417.52MB
  • 9. Example Projects/5. Titanic Project - Part 3.mp416.2MB
  • 9. Example Projects/6. Titanic Project - Part 4.mp42.46MB
  • 9. Example Projects/7. Intro to Data Project - Stock Market Analysis.mp410.37MB
  • 9. Example Projects/8. Data Project - Stock Market Analysis Part 1.mp413.64MB
  • 9. Example Projects/9. Data Project - Stock Market Analysis Part 2.mp423.43MB