种子简介
种子名称:
[CourseClub.NET] Coursera - Introduction to Deep Learning
文件类型:
视频
文件数目:
39个文件
文件大小:
1.27 GB
收录时间:
2019-7-31 19:08
已经下载:
3次
资源热度:
97
最近下载:
2024-12-16 15:08
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:70e9796992bcbb00f65f3672ae86eb335593f36e&dn=[CourseClub.NET] Coursera - Introduction to Deep Learning
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[CourseClub.NET] Coursera - Introduction to Deep Learning.torrent
001.Specialization Promo/001. Welcome to AML specialization!.mp413.67MB
002.Course intro/002. Course intro.mp422.1MB
003.Linear model as the simplest neural network/003. Linear regression.mp435.73MB
003.Linear model as the simplest neural network/004. Linear classification.mp442.66MB
003.Linear model as the simplest neural network/005. Gradient descent.mp418.96MB
004.Regularization in machine learning/006. Overfitting problem and model validation.mp426.42MB
004.Regularization in machine learning/007. Model regularization.mp419.85MB
005.Stochastic methods for optimization/008. Stochastic gradient descent.mp421.1MB
005.Stochastic methods for optimization/009. Gradient descent extensions.mp436.57MB
006.The simplest neural network MLP/010. Multilayer perceptron (MLP).mp444.68MB
006.The simplest neural network MLP/011. Chain rule.mp426.59MB
006.The simplest neural network MLP/012. Backpropagation.mp431.63MB
007.Matrix derivatives/013. Efficient MLP implementation.mp447.09MB
007.Matrix derivatives/014. Other matrix derivatives.mp421.42MB
008.TensorFlow framework/015. What is TensorFlow.mp439.44MB
008.TensorFlow framework/016. Our first model in TensorFlow.mp436.8MB
009.Philosophy of deep learning/017. What Deep Learning is and is not.mp429.46MB
009.Philosophy of deep learning/018. Deep learning as a language.mp424.6MB
010.Introduction to CNN/019. Motivation for convolutional layers.mp441.38MB
010.Introduction to CNN/020. Our first CNN architecture.mp442.57MB
011.Modern CNNs/021. Training tips and tricks for deep CNNs.mp457.9MB
011.Modern CNNs/022. Overview of modern CNN architectures.mp432.24MB
012.Applications of CNNs/023. Learning new tasks with pre-trained CNNs.mp419.28MB
012.Applications of CNNs/024. A glimpse of other Computer Vision tasks.mp430.74MB
013.Intro to Unsupervised Learning/025. Unsupervised learning what it is and why bother.mp423.78MB
013.Intro to Unsupervised Learning/026. Autoencoders 101.mp422.14MB
014.More Autoencoders/027. Autoencoder applications.mp440.85MB
014.More Autoencoders/028. Autoencoder applications image generation, data visualization & more.mp428.21MB
015.Word Embeddings/029. Natural language processing primer.mp436.68MB
015.Word Embeddings/030. Word embeddings.mp448.35MB
016.Generative Adversarial Networks/031. Generative models 101.mp426.68MB
016.Generative Adversarial Networks/032. Generative Adversarial Networks.mp436.16MB
016.Generative Adversarial Networks/033. Applications of adversarial approach.mp441.89MB
017.Introduction to RNN/034. Motivation for recurrent layers.mp430.15MB
017.Introduction to RNN/035. Simple RNN and Backpropagation.mp435.07MB
018.Modern RNNs/036. The training of RNNs is not that easy.mp426.39MB
018.Modern RNNs/037. Dealing with vanishing and exploding gradients.mp434.86MB
018.Modern RNNs/038. Modern RNNs LSTM and GRU.mp447.7MB
019.Applications of RNNs/039. Practical use cases for RNNs.mp456.12MB