种子简介
种子名称:
[FreeCourseSite.com] Udemy - Artificial Intelligence Masterclass
文件类型:
视频
文件数目:
68个文件
文件大小:
6 GB
收录时间:
2020-11-26 03:34
已经下载:
3次
资源热度:
152
最近下载:
2025-1-5 12:06
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:6b7678d03113b9ce29ee3ca1e8846987cd13e4de&dn=[FreeCourseSite.com] Udemy - Artificial Intelligence Masterclass
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[FreeCourseSite.com] Udemy - Artificial Intelligence Masterclass.torrent
1. Introduction/1. Updates on Udemy Reviews.mp446.04MB
1. Introduction/2. Introduction + Course Structure + Demo.mp4156.76MB
1. Introduction/3. Your Three Best Resources.mp4143.26MB
10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.mp468.6MB
10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.mp4154.25MB
11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.mp4108.84MB
11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.mp4119.43MB
11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.mp4149.11MB
11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).mp4144.07MB
11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).mp4143.91MB
11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.mp4108.1MB
12. The Final Run/1. The Whole Implementation.mp4191.62MB
12. The Final Run/3. Installing the required packages.mp4158.71MB
12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.mp4125.1MB
2. Step 1 - Artificial Neural Network/2. Plan of Attack.mp411.87MB
2. Step 1 - Artificial Neural Network/3. The Neuron.mp498.79MB
2. Step 1 - Artificial Neural Network/4. The Activation Function.mp445.36MB
2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.mp481.95MB
2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.mp4112.12MB
2. Step 1 - Artificial Neural Network/7. Gradient Descent.mp460.63MB
2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.mp467.3MB
2. Step 1 - Artificial Neural Network/9. Backpropagation.mp443.14MB
3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.mp4117.97MB
3. Step 2 - Convolutional Neural Network/2. Plan of Attack.mp415.82MB
3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.mp4107.98MB
3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.mp497.94MB
3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.mp453.45MB
3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.mp4140.18MB
3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.mp47.95MB
3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.mp4194.27MB
3. Step 2 - Convolutional Neural Network/9. Summary.mp430.33MB
4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.mp416.45MB
4. Step 3 - AutoEncoder/11. Deep AutoEncoders.mp411.96MB
4. Step 3 - AutoEncoder/2. Plan of Attack.mp411.85MB
4. Step 3 - AutoEncoder/3. What are AutoEncoders.mp494.62MB
4. Step 3 - AutoEncoder/4. A Note on Biases.mp48.62MB
4. Step 3 - AutoEncoder/5. Training an AutoEncoder.mp450.31MB
4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.mp428.07MB
4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.mp457.46MB
4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.mp424.11MB
4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.mp420.56MB
5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.mp4103.69MB
5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.mp426.32MB
5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.mp426.41MB
6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.mp458.86MB
6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.mp471.72MB
6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.mp4133.65MB
6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.mp480.34MB
6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.mp492.89MB
6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.mp4186.99MB
7. Step 6 - Recurrent Neural Network/2. Plan of Attack.mp410.5MB
7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.mp4121.09MB
7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.mp4111.17MB
7. Step 6 - Recurrent Neural Network/5. LSTMs.mp4136.52MB
7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.mp4187.41MB
7. Step 6 - Recurrent Neural Network/7. LSTM Variations.mp420.12MB
8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.mp483.39MB
8. Step 7 - Mixture Density Network/3. Mixture Density Networks.mp465.36MB
8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.mp445.31MB
9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).mp4162.89MB
9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.mp499.5MB
9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.mp476.58MB
9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.mp4127.16MB
9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.mp4131.12MB
9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.mp4125.49MB
9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.mp4146.97MB
9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.mp4109.45MB
9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).mp4177.45MB