本站已收录 番号和无损神作磁力链接/BT种子 

Neural Networks for Machine Learning

种子简介

种子名称: Neural Networks for Machine Learning
文件类型:
文件数目: 78个文件
文件大小: 919.67 MB
收录时间: 2013-12-8 21:13
已经下载: 3
资源热度: 213
最近下载: 2024-11-20 00:50

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:65EC8A88B2C48329BD11761A87F0EEF0BFCA60ED&dn=Neural Networks for Machine Learning 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

Neural Networks for Machine Learning.torrent
  • 0101 Why do we need machine learning_.mp415.05MB
  • 0102 What are neural networks_.mp49.76MB
  • 0103 Some simple models of neurons.mp49.26MB
  • 0104 A simple example of learning.mp46.57MB
  • 0105 Three types of learning.mp48.96MB
  • 0201 Types of neural network architectures.mp48.78MB
  • 0202 Perceptrons_ The first generation of neural networks.mp49.78MB
  • 0203 A geometrical view of perceptrons.mp47.32MB
  • 0204 Why the learning works.mp45.9MB
  • 0205 What perceptrons can_t do.mp416.57MB
  • 0301 Learning the weights of a linear neuron.mp413.52MB
  • 0302 The error surface for a linear neuron.mp45.89MB
  • 0303 Learning the weights of a logistic output neuron.mp44.37MB
  • 0304 The backpropagation algorithm.mp413.35MB
  • 0305 Using the derivatives computed by backpropagation.mp411.15MB
  • 0401 Learning to predict the next word.mp414.28MB
  • 0402 A brief diversion into cognitive science.mp45.31MB
  • 0403 Another diversion_ The softmax output function.mp48.03MB
  • 0404 Neuro-probabilistic language models.mp48.93MB
  • 0405 Ways to deal with the large number of possible outputs.mp414.26MB
  • 0501 Why object recognition is difficult.mp45.37MB
  • 0502 Achieving viewpoint invariance.mp46.89MB
  • 0503 Convolutional nets for digit recognition.mp418.46MB
  • 0504 Convolutional nets for object recognition.mp423.03MB
  • 0601 Overview of mini-batch gradient descent.mp49.6MB
  • 0602 A bag of tricks for mini-batch gradient descent.mp414.9MB
  • 0603 The momentum method.mp49.74MB
  • 0604 Adaptive learning rates for each connection.mp46.63MB
  • 0605 Rmsprop_ Divide the gradient by a running average of its recent magnitude.mp415.12MB
  • 0701 Modeling sequences_ A brief overview.mp420.13MB
  • 0702 Training RNNs with back propagation.mp47.33MB
  • 0703 A toy example of training an RNN.mp47.24MB
  • 0704 Why it is difficult to train an RNN.mp48.89MB
  • 0705 Long-term Short-term-memory.mp410.23MB
  • 0801 A brief overview of Hessian Free optimization.mp416.24MB
  • 0802 Modeling character strings with multiplicative connections.mp416.56MB
  • 0803 Learning to predict the next character using HF.mp413.92MB
  • 0804 Echo State Networks.mp411.28MB
  • 0901 Overview of ways to improve generalization.mp413.57MB
  • 0902 Limiting the size of the weights.mp47.36MB
  • 0903 Using noise as a regularizer.mp48.48MB
  • 0904 Introduction to the full Bayesian approach.mp412MB
  • 0905 The Bayesian interpretation of weight decay.mp412.27MB
  • 0906 MacKay_s quick and dirty method of setting weight costs.mp44.37MB
  • 1001 Why it helps to combine models.mp415.12MB
  • 1002 Mixtures of Experts.mp414.98MB
  • 1003 The idea of full Bayesian learning.mp48.39MB
  • 1004 Making full Bayesian learning practical.mp48.13MB
  • 1005 Dropout.mp49.69MB
  • 1101 Hopfield Nets.mp414.65MB
  • 1102 Dealing with spurious minima.mp412.77MB
  • 1103 Hopfield nets with hidden units.mp411.31MB
  • 1104 Using stochastic units to improv search.mp411.76MB
  • 1105 How a Boltzmann machine models data.mp413.28MB
  • 1201 Boltzmann machine learning.mp414.03MB
  • 1202 OPTIONAL VIDEO_ More efficient ways to get the statistics.mp416.93MB
  • 1203 Restricted Boltzmann Machines.mp412.68MB
  • 1204 An example of RBM learning.mp48.71MB
  • 1205 RBMs for collaborative filtering.mp49.53MB
  • 1301 The ups and downs of back propagation.mp411.83MB
  • 1302 Belief Nets.mp414.86MB
  • 1303 Learning sigmoid belief nets.mp414.19MB
  • 1304 The wake-sleep algorithm.mp415.68MB
  • 1401 Learning layers of features by stacking RBMs.mp420.07MB
  • 1402 Discriminative learning for DBNs.mp411.29MB
  • 1403 What happens during discriminative fine-tuning_.mp410.17MB
  • 1404 Modeling real-valued data with an RBM.mp411.2MB
  • 1405 OPTIONAL VIDEO_ RBMs are infinite sigmoid belief nets.mp419.44MB
  • 1501 From PCA to autoencoders.mp49.68MB
  • 1502 Deep auto encoders.mp44.92MB
  • 1503 Deep auto encoders for document retrieval.mp410.25MB
  • 1504 Semantic Hashing.mp410.97MB
  • 1505 Learning binary codes for image retrieval.mp411.51MB
  • 1506 Shallow autoencoders for pre-training.mp48.25MB
  • 1601 OPTIONAL_ Learning a joint model of images and captions.mp413.83MB
  • 1602 OPTIONAL_ Hierarchical Coordinate Frames.mp411.16MB
  • 1603 OPTIONAL_ Bayesian optimization of hyper-parameters.mp415.8MB
  • 1604 OPTIONAL_ The fog of progress.mp42.78MB