种子简介
种子名称:
[Manning] Machine learning bookcamp (hevc) (2021) [EN]
文件类型:
视频
文件数目:
57个文件
文件大小:
286.19 MB
收录时间:
2023-8-25 20:19
已经下载:
3次
资源热度:
135
最近下载:
2025-1-17 06:59
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:63ab46b6e621e43ea1b690108b1b949229fd4c42&dn=[Manning] Machine learning bookcamp (hevc) (2021) [EN]
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[Manning] Machine learning bookcamp (hevc) (2021) [EN].torrent
1 - Ch1 Introduction to machine learning.m4v6.65MB
2 - Ch1 When machine learning isn’t helpful.m4v6.47MB
3 - Ch1 Evaluation.m4v6.02MB
4 - Ch2 Machine learning for regression.m4v3.84MB
5 - Ch2 Exploratory data analysis.m4v4.52MB
6 - Ch2 Target variable analysis.m4v4.87MB
7 - Ch2 Machine learning for regression - again.m4v5.36MB
8 - Ch2 Linear regression.m4v4.77MB
9 - Ch2 Predicting the price.m4v5.24MB
10 - Ch2 Validating the model.m4v6.71MB
11 - Ch2 Regularization.m4v4.04MB
12 - Ch2 Using the model.m4v3.69MB
13 - Ch3 Machine learning for classification.m4v6.26MB
14 - Ch3 Initial data preparation.m4v5.3MB
15 - Ch3 Feature importance, Part 1.m4v5.44MB
16 - Ch3 Feature importance, Part 2.m4v3.95MB
17 - Ch3 Feature engineering.m4v4.27MB
18 - Ch3 Machine learning for classification.m4v3.22MB
19 - Ch3 Training logistic regression.m4v5.17MB
20 - Ch3 Model interpretation.m4v6.46MB
21 - Ch3 Using the model.m4v6.21MB
22 - Ch4 Evaluation metrics for classification.m4v5.6MB
23 - Ch4 Confusion table.m4v5.76MB
24 - Ch4 Precision and recall.m4v3.16MB
25 - Ch4 ROC curve and AUC score.m4v6.83MB
26 - Ch4 ROC Curve.m4v5.89MB
27 - Ch4 Parameter tuning.m4v3.61MB
28 - Ch4 Next steps.m4v5.67MB
29 - Ch 5 Deploying machine learning models.m4v4.53MB
30 - Ch5 Model serving.m4v5.4MB
31 - Ch5 Managing dependencies.m4v4.15MB
32 - Ch5 Docker.m4v3.63MB
33 - Ch5 Deployment.m4v4.89MB
34 - Ch6 Decision trees and ensemble learning.m4v3.07MB
35 - Ch6 Data cleaning.m4v5.43MB
36 - Ch6 Decision trees.m4v5.38MB
37 - Ch6 Decision tree learning algorithm.m4v4.58MB
38 - Ch6 Random forest.m4v4.29MB
39 - Ch6 Gradient boosting.m4v3.51MB
40 - Ch6 Parameter tuning for XGBoost.m4v6.24MB
41 - Ch6 Next steps.m4v3.92MB
42 - Ch7 Neural networks and deep learning.m4v5.8MB
43 - Ch7 Convolutional neural networks.m4v3.21MB
44 - Ch7 Internals of the model.m4v3.47MB
45 - Ch7 Training the model.m4v3.71MB
46 - Ch7 Training the model - again.m4v4.57MB
47 - Ch7 Saving the model and checkpointing.m4v5.39MB
48 - Ch7 Data augmentation.m4v4.58MB
49 - Ch7 Using the model.m4v5.73MB
50 - Ch8 Serverless deep learning.m4v6.59MB
51 - Ch8 Preparing the Docker image.m4v6.73MB
52 - Ch9 Serving models with Kubernetes and Kubeflow.m4v5.53MB
53 - Ch9 Running TensorFlow Serving locally.m4v6.53MB
54 - Ch9 Model deployment with Kubernetes.m4v6.35MB
55 - Ch9 Deploying to Kubernetes.m4v5.51MB
56 - Ch9 Model deployment with Kubeflow.m4v3.82MB
57 - Ch9 KFServing transformers.m4v4.66MB