本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCourseLab.com] Udemy - Zero to Deep Learning™ with Python and Keras

种子简介

种子名称: [FreeCourseLab.com] Udemy - Zero to Deep Learning™ with Python and Keras
文件类型: 视频
文件数目: 142个文件
文件大小: 1.86 GB
收录时间: 2019-9-17 10:31
已经下载: 3
资源热度: 144
最近下载: 2025-1-23 01:30

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:5737267f67f7a4f8d1fef878d051f8fa9db957b2&dn=[FreeCourseLab.com] Udemy - Zero to Deep Learning™ with Python and Keras 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCourseLab.com] Udemy - Zero to Deep Learning™ with Python and Keras.torrent
  • 1. Welcome to the course!/1. Welcome to the course!.mp427.38MB
  • 1. Welcome to the course!/2. Introduction.mp433.87MB
  • 1. Welcome to the course!/3. Real world applications of deep learning.mp423.61MB
  • 1. Welcome to the course!/4. Download and install Anaconda.mp425.6MB
  • 1. Welcome to the course!/5. Installation Video Guide.mp461.14MB
  • 1. Welcome to the course!/7. Course Folder Walkthrough.mp419.24MB
  • 1. Welcome to the course!/8. Your first deep learning model.mp432.9MB
  • 2. Data/1. Section 2 Intro.mp422.25MB
  • 2. Data/10. Exercise 1 Solution.mp49.42MB
  • 2. Data/11. Exercise 2 Presentation.mp41.92MB
  • 2. Data/12. Exercise 2 Solution.mp413.52MB
  • 2. Data/13. Exercise 3 Presentation.mp41.74MB
  • 2. Data/14. Exercise 3 Solution.mp47.15MB
  • 2. Data/15. Exercise 4 Presentation.mp41.51MB
  • 2. Data/16. Exercise 4 Solution.mp44.2MB
  • 2. Data/17. Exercise 5 Presentation.mp42.12MB
  • 2. Data/18. Exercise 5 Solution.mp47.81MB
  • 2. Data/2. Tabular data.mp411.74MB
  • 2. Data/3. Data exploration with Pandas code along.mp430.94MB
  • 2. Data/4. Visual data Exploration.mp49.15MB
  • 2. Data/5. Plotting with Matplotlib.mp432.85MB
  • 2. Data/6. Unstructured Data.mp411.33MB
  • 2. Data/7. Images and Sound in Jupyter.mp414.02MB
  • 2. Data/8. Feature Engineering.mp45.82MB
  • 2. Data/9. Exercise 1 Presentation.mp43.25MB
  • 3. Machine Learning/1. Section 3 Intro.mp438.97MB
  • 3. Machine Learning/10. Evaluating Performance code along.mp410.35MB
  • 3. Machine Learning/11. Classification.mp414.2MB
  • 3. Machine Learning/12. Classification code along.mp422.87MB
  • 3. Machine Learning/13. Overfitting.mp49.39MB
  • 3. Machine Learning/14. Cross Validation.mp412.38MB
  • 3. Machine Learning/15. Cross Validation code along.mp49.71MB
  • 3. Machine Learning/16. Confusion matrix.mp411.28MB
  • 3. Machine Learning/17. Confusion Matrix code along.mp48.65MB
  • 3. Machine Learning/18. Feature Preprocessing code along.mp416.01MB
  • 3. Machine Learning/19. Exercise 1 Presentation.mp46.45MB
  • 3. Machine Learning/2. Machine Learning Problems.mp49.31MB
  • 3. Machine Learning/20. Exercise 1 solution.mp437.31MB
  • 3. Machine Learning/21. Exercise 2 Presentation.mp47.4MB
  • 3. Machine Learning/22. Exercise 2 solution.mp443.21MB
  • 3. Machine Learning/3. Supervised Learning.mp410.42MB
  • 3. Machine Learning/4. Linear Regression.mp49.77MB
  • 3. Machine Learning/5. Cost Function.mp46.01MB
  • 3. Machine Learning/6. Cost Function code along.mp417.9MB
  • 3. Machine Learning/7. Finding the best model.mp45.1MB
  • 3. Machine Learning/8. Linear Regression code along.mp439.87MB
  • 3. Machine Learning/9. Evaluating Performance.mp49.04MB
  • 4. Deep Learning Intro/1. Section 4 Intro.mp430.93MB
  • 4. Deep Learning Intro/10. Exercise 1 Presentation.mp44.75MB
  • 4. Deep Learning Intro/11. Exercise 1 Solution.mp424.77MB
  • 4. Deep Learning Intro/12. Exercise 2 Presentation.mp43.03MB
  • 4. Deep Learning Intro/13. Exercise 2 Solution.mp425.2MB
  • 4. Deep Learning Intro/14. Exercise 3 Presentation.mp42.82MB
  • 4. Deep Learning Intro/15. Exercise 3 Solution.mp420.61MB
  • 4. Deep Learning Intro/16. Exercise 4 Presentation.mp41.93MB
  • 4. Deep Learning Intro/17. Exercise 4 Solution.mp413.6MB
  • 4. Deep Learning Intro/2. Deep Learning successes.mp410.15MB
  • 4. Deep Learning Intro/3. Neural Networks.mp49.91MB
  • 4. Deep Learning Intro/4. Deeper Networks.mp48.47MB
  • 4. Deep Learning Intro/5. Neural Networks code along.mp421.11MB
  • 4. Deep Learning Intro/6. Multiple Outputs.mp410.32MB
  • 4. Deep Learning Intro/7. Multiclass classification code along.mp433.94MB
  • 4. Deep Learning Intro/8. Activation Functions.mp48.51MB
  • 4. Deep Learning Intro/9. Feed forward.mp49.98MB
  • 5. Gradient Descent/1. Section 5 Intro.mp430.76MB
  • 5. Gradient Descent/10. Learning Rate code along.mp433.17MB
  • 5. Gradient Descent/11. Gradient Descent.mp46.42MB
  • 5. Gradient Descent/12. Gradient Descent code along.mp413.2MB
  • 5. Gradient Descent/13. EWMA.mp47.37MB
  • 5. Gradient Descent/14. Optimizers.mp49.18MB
  • 5. Gradient Descent/15. Optimizers code along.mp410.69MB
  • 5. Gradient Descent/16. Initialization code along.mp413.36MB
  • 5. Gradient Descent/17. Inner Layers Visualization code along.mp432.28MB
  • 5. Gradient Descent/18. Exercise 1 Presentation.mp43.52MB
  • 5. Gradient Descent/19. Exercise 1 Solution.mp417.85MB
  • 5. Gradient Descent/2. Derivatives and Gradient.mp410.47MB
  • 5. Gradient Descent/20. Exercise 2 Presentation.mp42.44MB
  • 5. Gradient Descent/21. Exercise 2 Solution.mp411.01MB
  • 5. Gradient Descent/22. Exercise 3 Presentation.mp42.95MB
  • 5. Gradient Descent/23. Exercise 3 Solution.mp412.56MB
  • 5. Gradient Descent/24. Exercise 4 Presentation.mp43.69MB
  • 5. Gradient Descent/25. Exercise 4 Solution.mp411.16MB
  • 5. Gradient Descent/26. Tensorboard.mp48.29MB
  • 5. Gradient Descent/3. Backpropagation intuition.mp47.21MB
  • 5. Gradient Descent/4. Chain Rule.mp412.46MB
  • 5. Gradient Descent/5. Derivative Calculation.mp47.2MB
  • 5. Gradient Descent/6. Fully Connected Backpropagation.mp412.5MB
  • 5. Gradient Descent/7. Matrix Notation.mp48.56MB
  • 5. Gradient Descent/8. Numpy Arrays code along.mp419.43MB
  • 5. Gradient Descent/9. Learning Rate.mp43.68MB
  • 6. Convolutional Neural Networks/1. Section 6 Intro.mp435.44MB
  • 6. Convolutional Neural Networks/10. Convolution in 2 D.mp46.67MB
  • 6. Convolutional Neural Networks/11. Image Filters code along.mp46.41MB
  • 6. Convolutional Neural Networks/12. Convolutional Layers.mp412.32MB
  • 6. Convolutional Neural Networks/13. Convolutional Layers code along.mp414.41MB
  • 6. Convolutional Neural Networks/14. Pooling Layers.mp43.06MB
  • 6. Convolutional Neural Networks/15. Pooling Layers code along.mp45.27MB
  • 6. Convolutional Neural Networks/16. Convolutional Neural Networks.mp44.51MB
  • 6. Convolutional Neural Networks/17. Convolutional Neural Networks code along.mp413.97MB
  • 6. Convolutional Neural Networks/18. Weights in CNNs.mp45.23MB
  • 6. Convolutional Neural Networks/19. Beyond Images.mp45.27MB
  • 6. Convolutional Neural Networks/2. Features from Pixels.mp47.96MB
  • 6. Convolutional Neural Networks/20. Exercise 1 Presentation.mp417.26MB
  • 6. Convolutional Neural Networks/21. Exercise 1 Solution.mp412.87MB
  • 6. Convolutional Neural Networks/22. Exercise 2 Presentation.mp423.7MB
  • 6. Convolutional Neural Networks/23. Exercise 2 Solution.mp410.72MB
  • 6. Convolutional Neural Networks/3. MNIST Classification.mp43.94MB
  • 6. Convolutional Neural Networks/4. MNIST Classification code along.mp419.63MB
  • 6. Convolutional Neural Networks/5. Beyond Pixels.mp47.34MB
  • 6. Convolutional Neural Networks/6. Images as Tensors.mp410.4MB
  • 6. Convolutional Neural Networks/7. Tensor Math code along.mp417.19MB
  • 6. Convolutional Neural Networks/8. Convolution in 1 D.mp46.63MB
  • 6. Convolutional Neural Networks/9. Convolution in 1 D code along.mp45.14MB
  • 8. Recurrent Neural Networks/1. Section 8 Intro.mp424.47MB
  • 8. Recurrent Neural Networks/10. Exercise 1 Presentation.mp410.66MB
  • 8. Recurrent Neural Networks/11. Exercise 1 Solution.mp47.95MB
  • 8. Recurrent Neural Networks/12. Exercise 2 Presentation.mp48.22MB
  • 8. Recurrent Neural Networks/2. Time Series.mp410.43MB
  • 8. Recurrent Neural Networks/3. Sequence problems.mp48.76MB
  • 8. Recurrent Neural Networks/4. Vanilla RNN.mp45.64MB
  • 8. Recurrent Neural Networks/5. LSTM and GRU.mp411.47MB
  • 8. Recurrent Neural Networks/6. Time Series Forecasting code along.mp416.13MB
  • 8. Recurrent Neural Networks/7. Time Series Forecasting with LSTM code along.mp49.45MB
  • 8. Recurrent Neural Networks/8. Rolling Windows.mp45.08MB
  • 8. Recurrent Neural Networks/9. Rolling Windows code along.mp421.13MB
  • 9. Improving performance/1. Section 9 Intro.mp419.19MB
  • 9. Improving performance/10. Image Generator code along.mp415.32MB
  • 9. Improving performance/11. Hyperparameter search.mp47.15MB
  • 9. Improving performance/12. Embeddings.mp46.55MB
  • 9. Improving performance/13. Embeddings code along.mp45.73MB
  • 9. Improving performance/14. Movies Reviews Sentiment Analysis code along.mp426.73MB
  • 9. Improving performance/15. Exercise 1 Presentation.mp47.64MB
  • 9. Improving performance/17. Exercise 2 Presentation.mp45.5MB
  • 9. Improving performance/19. Exercise 3 Presentation.mp423.87MB
  • 9. Improving performance/2. Learning curves.mp45.46MB
  • 9. Improving performance/3. Learning curves code along.mp418.94MB
  • 9. Improving performance/4. Batch Normalization.mp43.83MB
  • 9. Improving performance/5. Batch Normalization code along.mp415.01MB
  • 9. Improving performance/6. Dropout.mp45.96MB
  • 9. Improving performance/7. Dropout and Regularization code along.mp46.29MB
  • 9. Improving performance/8. Data Augmentation.mp46.08MB
  • 9. Improving performance/9. Continuous Learning.mp44.84MB