种子简介
种子名称:
[Tutorialsplanet.NET] Udemy - A Complete Guide on TensorFlow 2.0 using Keras API
文件类型:
视频
文件数目:
36个文件
文件大小:
1.78 GB
收录时间:
2021-9-24 18:05
已经下载:
3次
资源热度:
353
最近下载:
2025-1-17 13:15
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:3ddcf181ae8c891e45764dac1654e387e1c67a4e&dn=[Tutorialsplanet.NET] Udemy - A Complete Guide on TensorFlow 2.0 using Keras API
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[Tutorialsplanet.NET] Udemy - A Complete Guide on TensorFlow 2.0 using Keras API.torrent
10. Dataset Preprocessing with TensorFlow Transform (TFT)/1. Project Setup.mp410.06MB
11. Fashion API with Flask and TensorFlow 2.0/1. Project Setup.mp436.74MB
11. Fashion API with Flask and TensorFlow 2.0/3. Loading a pre-trained model.mp420.48MB
11. Fashion API with Flask and TensorFlow 2.0/5. Creating classify function.mp453.14MB
12. Image Classification API with TensorFlow Serving/3. Project setup.mp425.52MB
13. TensorFlow Lite Prepare a model for a mobile device/2. Project setup.mp48.05MB
13. TensorFlow Lite Prepare a model for a mobile device/4. Building a model.mp414.85MB
13. TensorFlow Lite Prepare a model for a mobile device/6. Saving the model.mp49.4MB
14. Distributed Training with TensorFlow 2.0/2. Project Setup.mp49.08MB
14. Distributed Training with TensorFlow 2.0/3. Dataset preprocessing.mp425.58MB
14. Distributed Training with TensorFlow 2.0/6. Defining a distributed model.mp412.49MB
15. Annex 1 - Artificial Neural Networks Theory/1. Plan of Attack.mp411.84MB
15. Annex 1 - Artificial Neural Networks Theory/2. The Neuron.mp498.68MB
15. Annex 1 - Artificial Neural Networks Theory/3. The Activation Function.mp445.34MB
15. Annex 1 - Artificial Neural Networks Theory/6. Gradient Descent.mp460.56MB
15. Annex 1 - Artificial Neural Networks Theory/8. Backpropagation.mp443.12MB
16. Annex 2 - Convolutional Neural Networks Theory/1. Plan of Attack.mp415.79MB
16. Annex 2 - Convolutional Neural Networks Theory/3. Step 1 - Convolution.mp497.84MB
16. Annex 2 - Convolutional Neural Networks Theory/5. Step 2 - Max Pooling.mp4140.21MB
16. Annex 2 - Convolutional Neural Networks Theory/6. Step 3 - Flattening.mp47.92MB
16. Annex 2 - Convolutional Neural Networks Theory/8. Summary.mp430.32MB
17. Annex 3 - Recurrent Neural Networks Theory/1. Plan of Attack.mp410.48MB
17. Annex 3 - Recurrent Neural Networks Theory/3. Vanishing Gradient.mp4111MB
17. Annex 3 - Recurrent Neural Networks Theory/4. LSTMs.mp4136.43MB
17. Annex 3 - Recurrent Neural Networks Theory/5. LSTM Practical Intuition.mp4187.42MB
17. Annex 3 - Recurrent Neural Networks Theory/6. LSTM Variations.mp420.14MB
2. TensorFlow 2.0 Basics/1. From TensorFlow 1.x to TensorFlow 2.0.mp4114.8MB
2. TensorFlow 2.0 Basics/2. Constants, Variables, Tensors.mp471.33MB
2. TensorFlow 2.0 Basics/3. Operations with Tensors.mp449.25MB
2. TensorFlow 2.0 Basics/4. Strings.mp440.23MB
3. Artificial Neural Networks/1. Project Setup.mp459.25MB
3. Artificial Neural Networks/2. Data Preprocessing.mp461.76MB
3. Artificial Neural Networks/3. Building the Artificial Neural Network.mp460.43MB
3. Artificial Neural Networks/4. Training the Artificial Neural Network.mp448.51MB
3. Artificial Neural Networks/5. Evaluating the Artificial Neural Network.mp431.44MB
4. Convolutional Neural Networks/1. Project Setup & Data Preprocessing.mp447.36MB