本站已收录 番号和无损神作磁力链接/BT种子 

Machine Learning - Stanford

种子简介

种子名称: Machine Learning - Stanford
文件类型:
文件数目: 113个文件
文件大小: 1.62 GB
收录时间: 2011-12-28 18:22
已经下载: 3
资源热度: 68
最近下载: 2024-12-14 08:58

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:3B33CB59C493ED3468B81E2DD388419482C16F39&dn=Machine Learning - Stanford 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

Machine Learning - Stanford.torrent
  • 01.2-V2-Introduction-WhatIsMachineLearning.mp430.4MB
  • 01.3-V2-Introduction-SupervisedLearning.mp415.45MB
  • 01.4-V2-Introduction-UnsupervisedLearning.mp438.56MB
  • 02.1-V2-LinearRegressionWithOneVariable-ModelRepresentation.mp411.61MB
  • 02.2-V2-LinearRegressionWithOneVariable-CostFunction.mp413.08MB
  • 02.3-V2-LinearRegressionWithOneVariable-CostFunctionIntuitionI.mp416.3MB
  • 02.4-V2-LinearRegressionWithOneVariable-CostFunctionIntuitionII.mp431.62MB
  • 02.5-V2-LinearRegressionWithOneVariable-GradientDescent.mp427MB
  • 02.6-V2-LinearRegressionWithOneVariable-GradientDescentIntuition.mp418.92MB
  • 02.7-V2-LinearRegressionWithOneVariable-GradientDescentForLinearRegression.mp425.47MB
  • 02.8-V2-What'sNext.mp47.3MB
  • 03.1-V2-LinearAlgebraReview(Optional)-MatricesAndVectors.mp411.92MB
  • 03.2-V2-LinearAlgebraReview(Optional)-AdditionAndScalarMultiplication.mp49.22MB
  • 03.3-V2-LinearAlgebraReview(Optional)-MatrixVectorMultiplication.mp420.23MB
  • 03.4-V2-LinearAlgebraReview(Optional)-MatrixMatrixMultiplication.mp422.35MB
  • 03.5-V2-LinearAlgebraReview(Optional)-MatrixMultiplicationProperties.mp411.77MB
  • 03.6-V2-LinearAlgebraReview(Optional)-InverseAndTranspose.mp424.6MB
  • 04.1-LinearRegressionWithMultipleVariables-MultipleFeatures.mp46.13MB
  • 04.2-LinearRegressionWithMultipleVariables-GradientDescentForMultipleVariables.mp45.9MB
  • 04.3-LinearRegressionWithMultipleVariables-GradientDescentInPracticeIFeatureScaling.mp47.58MB
  • 04.4-LinearRegressionWithMultipleVariables-GradientDescentInPracticeIILearningRate.mp46.86MB
  • 04.5-LinearRegressionWithMultipleVariables-FeaturesAndPolynomialRegression.mp45.74MB
  • 04.6-V2-LinearRegressionWithMultipleVariables-NormalEquation.mp413.34MB
  • 04.7-LinearRegressionWithMultipleVariables-NormalEquationNonInvertibility(Optional).mp45.18MB
  • 05.1-OctaveTutorial-BasicOperations.mp420.69MB
  • 05.2-OctaveTutorial-MovingDataAround.mp425.42MB
  • 05.3-OctaveTutorial-ComputingOnData.mp410.37MB
  • 05.4-OctaveTutorial-PlottingData.mp411.31MB
  • 05.5-OctaveTutorial-ForWhileIfStatementsAndFunctions.mp419.69MB
  • 05.6-OctaveTutorial-Vectorization.mp416.83MB
  • 05.7-OctaveTutorial-WorkingOnAndSubmittingProgrammingExercises.mp47.25MB
  • 06.1-LogisticRegression-Classification.mp48.73MB
  • 06.2-LogisticRegression-HypothesisRepresentation.mp48.81MB
  • 06.3-LogisticRegression-DecisionBoundary.mp417.51MB
  • 06.4-LogisticRegression-CostFunction.mp414.11MB
  • 06.5-LogisticRegression-SimplifiedCostFunctionAndGradientDescent.mp413.07MB
  • 06.6-LogisticRegression-AdvancedOptimization.mp421.59MB
  • 06.7-LogisticRegression-MultiClassClassificationOneVsAll.mp47.29MB
  • 07.1-Regularization-TheProblemOfOverfitting.mp411.96MB
  • 07.2-Regularization-CostFunction.mp412.43MB
  • 07.3-Regularization-RegularizedLinearRegression.mp412.77MB
  • 07.4-Regularization-RegularizedLogisticRegression.mp413.5MB
  • 08.1-NeuralNetworksRepresentation-NonLinearHypotheses.mp411.53MB
  • 08.2-NeuralNetworksRepresentation-NeuronsAndTheBrain.mp411.47MB
  • 08.3-NeuralNetworksRepresentation-ModelRepresentationI.mp414.37MB
  • 08.4-NeuralNetworksRepresentation-ModelRepresentationII.mp414.41MB
  • 08.5-NeuralNetworksRepresentation-ExamplesAndIntuitionsI.mp48.29MB
  • 08.6-NeuralNetworksRepresentation-ExamplesAndIntuitionsII.mp416.84MB
  • 08.7-NeuralNetworksRepresentation-MultiClassClassification.mp45.41MB
  • 09.1-NeuralNetworksLearning-CostFunction.mp48.1MB
  • 09.2-NeuralNetworksLearning-BackpropagationAlgorithm.mp415.07MB
  • 09.3-NeuralNetworksLearning-BackpropagationIntuition.mp417.14MB
  • 09.3-NeuralNetworksLearning-ImplementationNoteUnrollingParameters.mp410.54MB
  • 09.4-NeuralNetworksLearning-GradientChecking.mp414.76MB
  • 09.5-NeuralNetworksLearning-RandomInitialization.mp47.95MB
  • 09.7-NeuralNetworksLearning-PuttingItTogether.mp417.88MB
  • 09.8-NeuralNetworksLearning-AutonomousDrivingExample.mp421.25MB
  • 10.1-AdviceForApplyingMachineLearning-DecidingWhatToTryNext.mp47.58MB
  • 10.2-AdviceForApplyingMachineLearning-EvaluatingAHypothesis.mp49.52MB
  • 10.3-AdviceForApplyingMachineLearning-ModelSelectionAndTrainValidationTestSets.mp416.13MB
  • 10.4-AdviceForApplyingMachineLearning-DiagnosingBiasVsVariance.mp410.42MB
  • 10.5-AdviceForApplyingMachineLearning-RegularizationAndBiasVariance.mp413.87MB
  • 10.6-AdviceForApplyingMachineLearning-LearningCurves.mp413.54MB
  • 10.7-AdviceForApplyingMachineLearning-DecidingWhatToDoNextRevisited.mp48.94MB
  • 11.1-MachineLearningSystemDesign-PrioritizingWhatToWorkOn.mp412.32MB
  • 11.2-MachineLearningSystemDesign-ErrorAnalysis.mp416.94MB
  • 11.3-MachineLearningSystemDesign-ErrorMetricsForSkewedClasses.mp414.24MB
  • 11.4-MachineLearningSystemDesign-TradingOffPrecisionAndRecall.mp417.29MB
  • 11.5-MachineLearningSystemDesign-DataForMachineLearning.mp413.98MB
  • 12.1-SupportVectorMachines-OptimizationObjective.mp417.77MB
  • 12.2-SupportVectorMachines-LargeMarginIntuition.mp412.66MB
  • 12.3-SupportVectorMachines-MathematicsBehindLargeMarginClassificationOptional.mp422.91MB
  • 12.4-SupportVectorMachines-KernelsI.mp418.74MB
  • 12.5-SupportVectorMachines-KernelsII.mp418.31MB
  • 12.6-SupportVectorMachines-UsingAnSVM.mp425.76MB
  • 14.1-Clustering-UnsupervisedLearningIntroduction.mp44.12MB
  • 14.2-Clustering-KMeansAlgorithm.mp414.67MB
  • 14.3-Clustering-OptimizationObjective.mp48.78MB
  • 14.4-Clustering-RandomInitialization.mp49.31MB
  • 14.5-Clustering-ChoosingTheNumberOfClusters.mp410.11MB
  • 15.1-DimensionalityReduction-MotivationIDataCompression.mp417.63MB
  • 15.2-DimensionalityReduction-MotivationIIVisualization.mp46.91MB
  • 15.3-DimensionalityReduction-PrincipalComponentAnalysisProblemFormulation.mp411.4MB
  • 15.4-DimensionalityReduction-PrincipalComponentAnalysisAlgorithm.mp419.4MB
  • 15.5-DimensionalityReduction-ChoosingTheNumberOfPrincipalComponents.mp412.47MB
  • 15.6-DimensionalityReduction-ReconstructionFromCompressedRepresentation.mp45.93MB
  • 15.7-DimensionalityReduction-AdviceForApplyingPCA.mp415.8MB
  • 16.1-AnomalyDetection-ProblemMotivation-V1.mp48.83MB
  • 16.2-AnomalyDetection-GaussianDistribution.mp412.88MB
  • 16.3-AnomalyDetection-Algorithm.mp415.3MB
  • 16.4-AnomalyDetection-DevelopingAndEvaluatingAnAnomalyDetectionSystem.mp416.92MB
  • 16.5-AnomalyDetection-AnomalyDetectionVsSupervisedLearning-V1.mp410.79MB
  • 16.6-AnomalyDetection-ChoosingWhatFeaturesToUse.mp415.43MB
  • 16.7-AnomalyDetection-MultivariateGaussianDistribution-OPTIONAL.mp417.27MB
  • 16.8-AnomalyDetection-AnomalyDetectionUsingTheMultivariateGaussianDistribution-OPTIONAL.mp417.75MB
  • 17.1-RecommenderSystems-ProblemFormulation.mp413.65MB
  • 17.2-RecommenderSystems-ContentBasedRecommendations.mp418.73MB
  • 17.3-RecommenderSystems-CollaborativeFiltering-V1.mp413.1MB
  • 17.4-RecommenderSystems-CollaborativeFilteringAlgorithm.mp411.44MB
  • 17.5-RecommenderSystems-VectorizationLowRankMatrixFactorization.mp410.45MB
  • 17.6-RecommenderSystems-ImplementationalDetailMeanNormalization.mp410.46MB
  • 18.1-LargeScaleMachineLearning-LearningWithLargeDatasets.mp47.12MB
  • 18.2-LargeScaleMachineLearning-StochasticGradientDescent.mp416.4MB
  • 18.3-LargeScaleMachineLearning-MiniBatchGradientDescent.mp47.99MB
  • 18.4-LargeScaleMachineLearning-StochasticGradientDescentConvergence.mp414.41MB
  • 18.5-LargeScaleMachineLearning-OnlineLearning.mp415.96MB
  • 18.6-LargeScaleMachineLearning-MapReduceAndDataParallelism.mp417.3MB
  • 19.1-ApplicationExamplePhotoOCR-ProblemDescriptionAndPipeline.mp48.54MB
  • 19.2-ApplicationExamplePhotoOCR-SlidingWindows.mp410.1MB
  • 19.3-ApplicationExamplePhotoOCR-GettingLotsOfDataArtificialDataSynthesis.mp48.53MB
  • 19.4-ApplicationExamplePhotoOCR-CeilingAnalysisWhatPartOfThePipelineToWorkOnNext.mp410.64MB
  • 20.1-Conclusion-SummaryAndThankYou.mp44.52MB
  • Octave-3.2.4_i686-pc-mingw32_gcc-4.4.0_setup.exe69.61MB