本站已收录 番号和无损神作磁力链接/BT种子 

[FreeCourseSite.com] Udemy - Deep Learning Recurrent Neural Networks with Python

种子简介

种子名称: [FreeCourseSite.com] Udemy - Deep Learning Recurrent Neural Networks with Python
文件类型: 视频
文件数目: 97个文件
文件大小: 4.41 GB
收录时间: 2021-6-26 04:43
已经下载: 3
资源热度: 290
最近下载: 2025-1-4 12:17

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:30c735a65d9d5baca991871a009ef9eae3b2fb9d&dn=[FreeCourseSite.com] Udemy - Deep Learning Recurrent Neural Networks with Python 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FreeCourseSite.com] Udemy - Deep Learning Recurrent Neural Networks with Python.torrent
  • 01 Introduction to Course/001 Introduction to Instructor and Aisciences.mp454.73MB
  • 01 Introduction to Course/002 Focus of the Course.mp432.86MB
  • 01 Introduction to Course/003 Request for Your Honest Review.mp428.67MB
  • 02 Applications of RNN (Motivation)/001 Human Activity Recognition.mp450.98MB
  • 02 Applications of RNN (Motivation)/002 Image Captioning.mp458.71MB
  • 02 Applications of RNN (Motivation)/003 Machine Translation.mp446.92MB
  • 02 Applications of RNN (Motivation)/004 Speech Recognition.mp441.2MB
  • 02 Applications of RNN (Motivation)/005 Stock Price Predictions.mp463.16MB
  • 02 Applications of RNN (Motivation)/006 When to Model RNN.mp496.49MB
  • 02 Applications of RNN (Motivation)/007 Activity.mp414.83MB
  • 03 DNN Overview/001 Introduction to Deep Learning Module.mp411.1MB
  • 03 DNN Overview/002 Neuron and Perceptron.mp470.93MB
  • 03 DNN Overview/003 DNN Architecture.mp440.19MB
  • 03 DNN Overview/004 FeedForward FullyConnected MLP.mp425.18MB
  • 03 DNN Overview/005 Calculating Number of Weights of DNN.mp433.29MB
  • 03 DNN Overview/006 Number of Nuerons vs Number of Layers.mp433.48MB
  • 03 DNN Overview/007 Discriminative vs Generative Learning.mp435.59MB
  • 03 DNN Overview/008 Universal Approximation Therorem.mp448.82MB
  • 03 DNN Overview/009 Why Depth.mp418.07MB
  • 03 DNN Overview/010 Decision Boundary in DNN.mp433.32MB
  • 03 DNN Overview/011 Bias Term.mp443.19MB
  • 03 DNN Overview/012 Activation Function.mp443.02MB
  • 03 DNN Overview/013 DNN Training Parameters.mp452.16MB
  • 03 DNN Overview/014 Gradient Descent.mp440.67MB
  • 03 DNN Overview/015 Backpropagation.mp455.83MB
  • 03 DNN Overview/016 Training DNN Animantion.mp448.05MB
  • 03 DNN Overview/017 Weigth Initialization.mp463.48MB
  • 03 DNN Overview/018 Batch miniBatch Stocastic.mp453.57MB
  • 03 DNN Overview/019 Batch Normalization.mp433.94MB
  • 03 DNN Overview/020 Rprop Momentum.mp485.07MB
  • 03 DNN Overview/021 Convergence Animation.mp447.67MB
  • 03 DNN Overview/022 DropOut EarlyStopping Hyperparameters.mp477.89MB
  • 04 RNN Architecture/001 Introduction to Module.mp419.88MB
  • 04 RNN Architecture/002 Fixed Length Memory Model.mp449.73MB
  • 04 RNN Architecture/003 Infinite Memory Architecture.mp459.79MB
  • 04 RNN Architecture/004 Weight Sharing.mp477.56MB
  • 04 RNN Architecture/005 Notations.mp445.89MB
  • 04 RNN Architecture/006 ManyToMany Model.mp451.78MB
  • 04 RNN Architecture/007 OneToMany Model.mp439.99MB
  • 04 RNN Architecture/008 ManyToOne Model.mp429.84MB
  • 04 RNN Architecture/009 Activity Many to One.mp432.35MB
  • 04 RNN Architecture/010 ManyToMany Different Sizes Model.mp458.87MB
  • 04 RNN Architecture/011 Activity Many to Many Nmt.mp425.14MB
  • 04 RNN Architecture/012 Models Summary.mp421.1MB
  • 04 RNN Architecture/013 Deep RNNs.mp440.68MB
  • 05 Gradient Decsent in RNN/001 Introduction to Gradient Descent Module.mp432.17MB
  • 05 Gradient Decsent in RNN/002 Example Setup.mp426.85MB
  • 05 Gradient Decsent in RNN/003 Equations.mp437.14MB
  • 05 Gradient Decsent in RNN/004 Loss Function.mp442.77MB
  • 05 Gradient Decsent in RNN/005 Why Gradients.mp432.62MB
  • 05 Gradient Decsent in RNN/006 Chain Rule.mp442.01MB
  • 05 Gradient Decsent in RNN/007 Chain Rule in Action.mp436.89MB
  • 05 Gradient Decsent in RNN/008 BackPropagation Through Time.mp471.16MB
  • 05 Gradient Decsent in RNN/009 Activity.mp48.59MB
  • 06 RNN implementation/001 Automatic Diffrenciation.mp415.57MB
  • 06 RNN implementation/002 Automatic Diffrenciation Pytorch.mp434.07MB
  • 06 RNN implementation/003 Language Modeling Next Word Prediction Vocabulary Index.mp420.08MB
  • 06 RNN implementation/004 Language Modeling Next Word Prediction Vocabulary Index Embeddings.mp419.54MB
  • 06 RNN implementation/005 Language Modeling Next Word Prediction RNN Architecture.mp419.05MB
  • 06 RNN implementation/006 Language Modeling Next Word Prediction Python 1.mp436.35MB
  • 06 RNN implementation/007 Language Modeling Next Word Prediction Python 2.mp449.31MB
  • 06 RNN implementation/008 Language Modeling Next Word Prediction Python 3.mp454.01MB
  • 06 RNN implementation/009 Language Modeling Next Word Prediction Python 4.mp432.48MB
  • 06 RNN implementation/010 Language Modeling Next Word Prediction Python 5.mp425.19MB
  • 06 RNN implementation/011 Language Modeling Next Word Prediction Python 6.mp490.25MB
  • 07 Sentiment Classification using RNN/001 Vocabulary Implementation.mp472.87MB
  • 07 Sentiment Classification using RNN/002 Vocabulary Implementation Helpers.mp435.53MB
  • 07 Sentiment Classification using RNN/003 Vocabulary Implementation From File.mp441.59MB
  • 07 Sentiment Classification using RNN/004 Vectorizer.mp426.32MB
  • 07 Sentiment Classification using RNN/005 RNN Setup 1.mp449.08MB
  • 07 Sentiment Classification using RNN/006 RNN Setup 2.mp4169.77MB
  • 07 Sentiment Classification using RNN/007 WhatNext.mp423.2MB
  • 08 Vanishing Gradients in RNN/001 Introduction to Better RNNs Module.mp431.19MB
  • 08 Vanishing Gradients in RNN/002 Introduction Vanishing Gradients in RNN.mp445.55MB
  • 08 Vanishing Gradients in RNN/003 GRU.mp457.48MB
  • 08 Vanishing Gradients in RNN/004 GRU Optional.mp427.75MB
  • 08 Vanishing Gradients in RNN/005 LSTM.mp436.7MB
  • 08 Vanishing Gradients in RNN/006 LSTM Optional.mp426.29MB
  • 08 Vanishing Gradients in RNN/007 Bidirectional RNN.mp442.25MB
  • 08 Vanishing Gradients in RNN/008 Attention Model.mp454.69MB
  • 08 Vanishing Gradients in RNN/009 Attention Model Optional.mp436.94MB
  • 09 TensorFlow/001 Introduction to TensorFlow.mp442.72MB
  • 09 TensorFlow/002 TensorFlow Text Classification Example using RNN.mp4130.38MB
  • 10 Project I_ Book Writer/001 Introduction.mp453.46MB
  • 10 Project I_ Book Writer/002 Data Mapping.mp473.37MB
  • 10 Project I_ Book Writer/003 Modling RNN Architecture.mp475.2MB
  • 10 Project I_ Book Writer/004 Modling RNN Model in TensorFlow.mp449.08MB
  • 10 Project I_ Book Writer/005 Modling RNN Model Training.mp438.97MB
  • 10 Project I_ Book Writer/006 Modling RNN Model Text Generation.mp472.55MB
  • 10 Project I_ Book Writer/007 Activity.mp437.09MB
  • 11 Project II_ Stock Price Prediction/001 Problem Statement.mp420.87MB
  • 11 Project II_ Stock Price Prediction/002 Data Set.mp463.8MB
  • 11 Project II_ Stock Price Prediction/003 Data Prepration.mp477.41MB
  • 11 Project II_ Stock Price Prediction/004 RNN Model Training and Evaluation.mp4114.05MB
  • 11 Project II_ Stock Price Prediction/005 Activity.mp425.37MB
  • 12 Further Readings and Resourses/001 Further Readings and Resourses 1.mp470.33MB
  • 13 Bonus Lecture/001 THANK YOU Bonus Video.mp429.69MB