种子简介
种子名称:
Lynda - Data Science Foundations: Data Mining
文件类型:
视频
文件数目:
54个文件
文件大小:
616.65 MB
收录时间:
2017-2-17 21:47
已经下载:
3次
资源热度:
135
最近下载:
2024-12-26 14:02
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:2b2db98b60882e3bb0bb2a5ad61f93eb82c82608&dn=Lynda - Data Science Foundations: Data Mining
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
Lynda - Data Science Foundations: Data Mining.torrent
053 Text mining in RapidMiner.mp420.04MB
028 Anomaly detection in Python.mp411.06MB
048 Sequence mining in BigML - Part 2.mp49.85MB
045 Sequence mining in R.mp413.39MB
034 Association analysis in Python.mp45.24MB
044 Sequence mining algorithms.mp47.24MB
019 Classification goals.mp46.31MB
032 Association analysis data.mp46.15MB
006 Software prerequisites.mp411.75MB
042 Regression analysis in RapidMiner.mp410.16MB
024 Classification in KNIME.mp416.06MB
046 Sequence mining in Python.mp49.94MB
007 Goals of data reduction.mp49.87MB
038 Regression analysis data.mp46.58MB
049 Text mining goals.mp45.02MB
004 Data mining prerequisites.mp45.74MB
031 Association analysis goals.mp410.11MB
050 Text mining algorithms.mp44.96MB
018 Clustering in Orange.mp414.85MB
037 Regression analysis goals.mp45.48MB
015 Clustering in R.mp414.44MB
041 Regression analysis in KNIME.mp46.86MB
020 Classification data.mp411.64MB
003 Exercise files.mp41.58MB
021 Classification in R.mp430.6MB
012 Data reduction in RapidMiner.mp419.62MB
047 Sequence mining in BigML - Part 1.mp48.75MB
008 Data for data reduction.mp47.82MB
013 Clustering goals.mp46.07MB
023 Classification in RapidMiner.mp420.12MB
039 Regression analysis in R.mp410.71MB
022 Classification in Python.mp48.69MB
002 Who should watch this course.mp41.71MB
054 Next steps.mp44.57MB
027 Anomaly detection in R.mp425.86MB
052 Text mining in Python.mp421.62MB
043 Sequence mining goals.mp43.92MB
051 Text mining in R.mp424.05MB
001 Welcome.mp45.58MB
016 Clustering in Python.mp46.7MB
036 Association analysis in KNIME.mp414.61MB
005 Algorithm prerequisites.mp45.76MB
011 Data reduction in Orange.mp49.94MB
009 Data reduction in R.mp423.22MB
029 Anomaly detection in BigML.mp413.31MB
017 Clustering in BigML.mp429.65MB
026 Anomaly detection data.mp410.51MB
033 Association analysis in R.mp422.12MB
030 Anomaly detection in RapidMiner.mp411.02MB
014 Clustering data.mp49.11MB
035 Association analysis in Orange.mp411.82MB
040 Regression analysis in Python.mp48.34MB
010 Data reduction in Python.mp48.63MB
025 Anomaly detection goals.mp47.9MB