本站已收录 番号和无损神作磁力链接/BT种子 

[FTUForum.com] [UDEMY] Deep Learning Plunge into Deep Learning [FTU]

种子简介

种子名称: [FTUForum.com] [UDEMY] Deep Learning Plunge into Deep Learning [FTU]
文件类型: 视频
文件数目: 36个文件
文件大小: 1.08 GB
收录时间: 2021-5-6 18:20
已经下载: 3
资源热度: 205
最近下载: 2024-12-20 10:41

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:293a7f57b5be044e51940205653c3449e33670e5&dn=[FTUForum.com] [UDEMY] Deep Learning Plunge into Deep Learning [FTU] 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

[FTUForum.com] [UDEMY] Deep Learning Plunge into Deep Learning [FTU].torrent
  • 1. Introduction/1. Applications of Deep Learning.mp444.71MB
  • 1. Introduction/2. What is Deep Learning.mp410.69MB
  • 1. Introduction/3. Why Deep Learning.mp45.63MB
  • 1. Introduction/4. Why now.mp416.47MB
  • 2. Fundamentals/1. Hello World of Deep learning.mp45.72MB
  • 2. Fundamentals/2. Dataset and Features.mp47.34MB
  • 2. Fundamentals/3. Classification.mp410.13MB
  • 3. Neural Networks/1. Perceptron.mp4102.93MB
  • 3. Neural Networks/2. Sigmoid Function.mp443.02MB
  • 3. Neural Networks/3. Softmax Function.mp455.92MB
  • 3. Neural Networks/4. One Hot Encoding.mp430.71MB
  • 3. Neural Networks/5. Activation Functions.mp424.89MB
  • 3. Neural Networks/6. Logic Gates and XOR Problem.mp414.3MB
  • 4. Training Neural Networks/1. Cross Entropy.mp436.99MB
  • 4. Training Neural Networks/10. Drop out.mp47.92MB
  • 4. Training Neural Networks/11. Vanishing Gradient Problem.mp423.84MB
  • 4. Training Neural Networks/2. Loss Optimization.mp417.11MB
  • 4. Training Neural Networks/3. Gradient Descent.mp467.55MB
  • 4. Training Neural Networks/4. Non Linear Models.mp427.69MB
  • 4. Training Neural Networks/5. Feed Forward.mp426.94MB
  • 4. Training Neural Networks/6. Backward Propagation.mp413.6MB
  • 4. Training Neural Networks/7. Overfitting problem.mp430.17MB
  • 4. Training Neural Networks/8. Early Stopping.mp426.06MB
  • 4. Training Neural Networks/9. Regularization.mp421.39MB
  • 5. Convolution Neural Networks/1. Need for feature extraction.mp441.5MB
  • 5. Convolution Neural Networks/2. Preprocessing.mp410.18MB
  • 5. Convolution Neural Networks/3. Convolution Operation.mp4226.33MB
  • 5. Convolution Neural Networks/4. Pooling Layer.mp429.92MB
  • 5. Convolution Neural Networks/5. Flattening.mp415.11MB
  • 6. Sequence Models/1. Recurrent Neural Networks.mp440.64MB
  • 6. Sequence Models/2. LSTMs.mp418.65MB
  • 6. Sequence Models/3. Architecture of LSTMs.mp420.03MB
  • 6. Sequence Models/4. Forget Gate.mp416.91MB
  • 6. Sequence Models/5. Learn Gate.mp49.62MB
  • 6. Sequence Models/6. Remember Gate.mp42.41MB
  • 6. Sequence Models/7. Use Gate.mp44.17MB