本站已收录 番号和无损神作磁力链接/BT种子 

LinkedIn Learning - Data Science Foundations Fundamentals [CoursesGhar]

种子简介

种子名称: LinkedIn Learning - Data Science Foundations Fundamentals [CoursesGhar]
文件类型: 视频
文件数目: 45个文件
文件大小: 703.09 MB
收录时间: 2023-10-29 01:10
已经下载: 3
资源热度: 163
最近下载: 2024-12-19 07:41

下载BT种子文件

下载Torrent文件(.torrent) 立即下载

磁力链接下载

magnet:?xt=urn:btih:2107b82bb0f0855115dbbd21bfb63c04aef88099&dn=LinkedIn Learning - Data Science Foundations Fundamentals [CoursesGhar] 复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。

喜欢这个种子的人也喜欢

种子包含的文件

LinkedIn Learning - Data Science Foundations Fundamentals [CoursesGhar].torrent
  • [10] 9. Acting on Data Science/[1] Interpretability.mp49.3MB
  • [10] 9. Acting on Data Science/[2] Actionable insights.mp48.24MB
  • [11] Conclusion/[1] Next steps.mp49.54MB
  • [1] Introduction/[1] The fundamentals of data science.mp411.81MB
  • [2] 1. What Is Data Science/[1] Supply and demand for data science.mp48.28MB
  • [2] 1. What Is Data Science/[2] The data science Venn diagram.mp48.64MB
  • [2] 1. What Is Data Science/[3] The data science pathway.mp423.22MB
  • [2] 1. What Is Data Science/[4] Roles and teams in data science.mp414.03MB
  • [3] 2. The Place of Data Science in the Data Universe/[1] Artificial intelligence.mp429.55MB
  • [3] 2. The Place of Data Science in the Data Universe/[2] Machine learning.mp429.96MB
  • [3] 2. The Place of Data Science in the Data Universe/[3] Deep learning neural networks.mp430.53MB
  • [3] 2. The Place of Data Science in the Data Universe/[4] Big data.mp414.91MB
  • [3] 2. The Place of Data Science in the Data Universe/[5] Predictive analytics.mp412.04MB
  • [3] 2. The Place of Data Science in the Data Universe/[6] Prescriptive analytics.mp413.98MB
  • [3] 2. The Place of Data Science in the Data Universe/[7] Business intelligence.mp411.08MB
  • [4] 3. Ethics and Agency/[1] Legal, ethical, and social issues of data science.mp412.59MB
  • [4] 3. Ethics and Agency/[2] Agency of algorithms and decision-makers.mp412.62MB
  • [5] 4. Sources of Data/[1] Data preparation.mp415MB
  • [5] 4. Sources of Data/[2] In-house data.mp46.05MB
  • [5] 4. Sources of Data/[3] Open data.mp420.52MB
  • [5] 4. Sources of Data/[4] APIs.mp410.55MB
  • [5] 4. Sources of Data/[5] Scraping data.mp429.71MB
  • [5] 4. Sources of Data/[6] Creating data.mp414.73MB
  • [5] 4. Sources of Data/[7] Passive collection of training data.mp413.21MB
  • [5] 4. Sources of Data/[8] Self-generated data.mp413.97MB
  • [6] 5. Sources of Rules/[1] The enumeration of explicit rules.mp412.66MB
  • [6] 5. Sources of Rules/[2] The derivation of rules from data analysis.mp423.83MB
  • [6] 5. Sources of Rules/[3] The generation of implicit rules.mp49.18MB
  • [7] 6. Tools for Data Science/[1] Applications for data analysis.mp415.15MB
  • [7] 6. Tools for Data Science/[2] Languages for data science.mp412.86MB
  • [7] 6. Tools for Data Science/[3] Machine learning as a service.mp411.26MB
  • [8] 7. Mathematics for Data Science/[1] Algebra.mp414.83MB
  • [8] 7. Mathematics for Data Science/[2] Calculus.mp48.66MB
  • [8] 7. Mathematics for Data Science/[3] Optimization and the combinatorial explosion.mp413.91MB
  • [8] 7. Mathematics for Data Science/[4] Bayes' theorem.mp410.58MB
  • [9] 8. Analyses for Data Science/[10] Aggregating models.mp415.04MB
  • [9] 8. Analyses for Data Science/[1] Descriptive analyses.mp423.19MB
  • [9] 8. Analyses for Data Science/[2] Predictive models.mp424.51MB
  • [9] 8. Analyses for Data Science/[3] Trend analysis.mp419.19MB
  • [9] 8. Analyses for Data Science/[4] Clustering.mp418.41MB
  • [9] 8. Analyses for Data Science/[5] Classifying.mp413.01MB
  • [9] 8. Analyses for Data Science/[6] Anomaly detection.mp418.19MB
  • [9] 8. Analyses for Data Science/[7] Dimensionality reduction.mp419.46MB
  • [9] 8. Analyses for Data Science/[8] Feature selection and creation.mp416.9MB
  • [9] 8. Analyses for Data Science/[9] Validating models.mp418.2MB