种子简介
种子名称:
Udemy - From 0 to 1 Machine Learning, NLP & Python-Cut to the Chase (2015)
文件类型:
视频
文件数目:
28个文件
文件大小:
2.87 GB
收录时间:
2017-6-8 07:59
已经下载:
3次
资源热度:
295
最近下载:
2025-1-7 06:26
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:1d3a0a888cddd9a2947343f1663fb55cbe773e1f&dn=Udemy - From 0 to 1 Machine Learning, NLP & Python-Cut to the Chase (2015)
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
Udemy - From 0 to 1 Machine Learning, NLP & Python-Cut to the Chase (2015).torrent
10_-_Artificial_Neural_Networks/22_-_Perceptron_-_How_it_works.mp457.64MB
06_-_Support_Vector_Machines/15_-_Support_Vector_Machines_Introduced.mp467.69MB
04_-_Naive_Bayes_Classifier/12_-_Naive_Bayes_Classifier_-_Application_to_spam_detection.mp468.76MB
08_-_Association_Detection/18_-_Association_Rules_Learning.mp471.87MB
03_-_Classification_-_A_form_of_supervised_learning/07_-_Bias_Variance_Trade-off.mp473.82MB
04_-_Naive_Bayes_Classifier/10_-_Naive_Bayes_Classifier.mp474.01MB
12_-_Natural_Language_Processing_and_Python/27_-_Document_Distance_using_TF-IDF.mp479.09MB
04_-_Naive_Bayes_Classifier/09_-_Bayes_Theorem.mp483.68MB
05_-_K-Nearest_Neighbors/13_-_K-Nearest_Neighbors.mp488.65MB
12_-_Natural_Language_Processing_and_Python/24_-_A_Serious_NLP_Application_-_Text_Auto_Summarization_using_Python.mp491.1MB
04_-_Naive_Bayes_Classifier/11_-_Naive_Bayes_Classifier_-_An_example.mp495.9MB
11_-_Regression_as_a_form_of_supervised_learning/23_-_Regression_Introduced_-_Linear_and_Logistic_Regression.mp499.03MB
12_-_Natural_Language_Processing_and_Python/28_-_Put_it_to_work_-_News_Article_Clustering_with_K-Means_and_TF-IDF.mp4107.16MB
02_-_Jump_right_in_-_Machine_learning_for_Spam_detection/02_-_Machine_Learning_-_Why_should_you_jump_on_the_bandwagon.mp4107.64MB
05_-_K-Nearest_Neighbors/14_-_K-Nearest_Neighbors_-_A_few_wrinkles.mp4114.72MB
02_-_Jump_right_in_-_Machine_learning_for_Spam_detection/04_-_Spam_Detection_with_Machine_Learning_Continued.mp4117.09MB
07_-_Clustering_as_a_form_Unsupervised_learning/17_-_Clustering_-_Problems_and_Techniques.mp4119MB
04_-_Naive_Bayes_Classifier/08_-_Random_Variables.mp4119.2MB
02_-_Jump_right_in_-_Machine_learning_for_Spam_detection/05_-_Get_the_Lay_of_the_Land_-_Types_of_Machine_Learning_Problems.mp4120.06MB
06_-_Support_Vector_Machines/16_-_Support_Vector_Machines_-_Maximum_Margin_Hyperplane_and_Kernel_Trick.mp4120.83MB
02_-_Jump_right_in_-_Machine_learning_for_Spam_detection/03_-_Plunging_In_-_Machine_Learning_Approaches_to_Spam_Detection.mp4121.81MB
09_-_Dimensionality_Reduction/20_-_Principal_Component_Analysis.mp4124.77MB
01_-_Introduction/01_-_What_this_course_is_about.mp4125.09MB
03_-_Classification_-_A_form_of_supervised_learning/06_-_Classification_-_Problems_and_Techniques.mp4127.5MB
09_-_Dimensionality_Reduction/19_-_Dimensionality_Reduction.mp4127.51MB
12_-_Natural_Language_Processing_and_Python/26_-_Put_it_to_work_-_News_Article_Classification_using_Naive_Bayes_Classifier.mp4140.68MB
10_-_Artificial_Neural_Networks/21_-_Artificial_Neural_Networks_I_Perceptron_introduced_via_Support_Vector_Machines_.mp4145.07MB
12_-_Natural_Language_Processing_and_Python/25_-_Put_it_to_work_-_News_Article_Classification_using_K-Nearest_Neighbors.mp4148MB