种子简介
种子名称:
[FreeTutorials.Us] Udemy - Artificial Intelligence Masterclass
文件类型:
视频
文件数目:
69个文件
文件大小:
6.1 GB
收录时间:
2019-7-16 05:48
已经下载:
3次
资源热度:
146
最近下载:
2024-11-15 21:19
下载BT种子文件
下载Torrent文件(.torrent)
立即下载
磁力链接下载
magnet:?xt=urn:btih:0cbfbe4bdd220e48976639ff1b095c571a8a26c6&dn=[FreeTutorials.Us] Udemy - Artificial Intelligence Masterclass
复制链接到迅雷、QQ旋风进行下载,或者使用百度云离线下载。
喜欢这个种子的人也喜欢
种子包含的文件
[FreeTutorials.Us] Udemy - Artificial Intelligence Masterclass.torrent
1. Introduction/1. Updates on Udemy Reviews.mp422.03MB
1. Introduction/2. Introduction + Course Structure + Demo.mp4195.34MB
1. Introduction/4. Your Three Best Resources.mp4134.49MB
10. Step 9 - Reinforcement Learning/2. What is Reinforcement Learning.mp468.6MB
10. Step 9 - Reinforcement Learning/3. A Pseudo Implementation of Reinforcement Learning for the Full World Model.mp4154.25MB
11. Step 10 - Deep NeuroEvolution/2. Deep NeuroEvolution.mp4108.84MB
11. Step 10 - Deep NeuroEvolution/3. Evolution Strategies.mp4119.44MB
11. Step 10 - Deep NeuroEvolution/4. Genetic Algorithms.mp4149.11MB
11. Step 10 - Deep NeuroEvolution/5. Covariance-Matrix Adaptation Evolution Strategy (CMA-ES).mp4144.06MB
11. Step 10 - Deep NeuroEvolution/6. Parameter-Exploring Policy Gradients (PEPG).mp4143.9MB
11. Step 10 - Deep NeuroEvolution/7. OpenAI Evolution Strategy.mp4108.09MB
12. The Final Run/1. The Whole Implementation.mp4273.65MB
12. The Final Run/3. Installing the required packages.mp4158.71MB
12. The Final Run/4. The Final Race Human Intelligence vs. Artificial Intelligence.mp4125.09MB
12. The Final Run/5. THANK YOU bonus video.mp429.21MB
2. Step 1 - Artificial Neural Network/2. Plan of Attack.mp415.85MB
2. Step 1 - Artificial Neural Network/3. The Neuron.mp498.79MB
2. Step 1 - Artificial Neural Network/4. The Activation Function.mp445.36MB
2. Step 1 - Artificial Neural Network/5. How do Neural Networks work.mp481.94MB
2. Step 1 - Artificial Neural Network/6. How do Neural Networks learn.mp4112.11MB
2. Step 1 - Artificial Neural Network/7. Gradient Descent.mp460.62MB
2. Step 1 - Artificial Neural Network/8. Stochastic Gradient Descent.mp467.29MB
2. Step 1 - Artificial Neural Network/9. Backpropagation.mp443.14MB
3. Step 2 - Convolutional Neural Network/10. Softmax & Cross-Entropy.mp4117.97MB
3. Step 2 - Convolutional Neural Network/2. Plan of Attack.mp421.81MB
3. Step 2 - Convolutional Neural Network/3. What are Convolutional Neural Networks.mp4107.97MB
3. Step 2 - Convolutional Neural Network/4. Step 1 - The Convolution Operation.mp497.93MB
3. Step 2 - Convolutional Neural Network/5. Step 1 Bis - The ReLU Layer.mp453.44MB
3. Step 2 - Convolutional Neural Network/6. Step 2 - Pooling.mp4140.17MB
3. Step 2 - Convolutional Neural Network/7. Step 3 - Flattening.mp47.94MB
3. Step 2 - Convolutional Neural Network/8. Step 4 - Full Connection.mp4194.26MB
3. Step 2 - Convolutional Neural Network/9. Summary.mp430.33MB
4. Step 3 - AutoEncoder/10. Stacked AutoEncoders.mp416.44MB
4. Step 3 - AutoEncoder/11. Deep AutoEncoders.mp411.97MB
4. Step 3 - AutoEncoder/2. Plan of Attack.mp415.85MB
4. Step 3 - AutoEncoder/3. What are AutoEncoders.mp494.61MB
4. Step 3 - AutoEncoder/4. A Note on Biases.mp48.61MB
4. Step 3 - AutoEncoder/5. Training an AutoEncoder.mp450.3MB
4. Step 3 - AutoEncoder/6. Overcomplete Hidden Layers.mp428.06MB
4. Step 3 - AutoEncoder/7. Sparse AutoEncoders.mp457.45MB
4. Step 3 - AutoEncoder/8. Denoising AutoEncoders.mp424.1MB
4. Step 3 - AutoEncoder/9. Contractive AutoEncoders.mp420.55MB
5. Step 4 - Variational AutoEncoder/2. Introduction to the VAE.mp472.81MB
5. Step 4 - Variational AutoEncoder/3. Variational AutoEncoders.mp426.31MB
5. Step 4 - Variational AutoEncoder/4. Reparameterization Trick.mp426.41MB
6. Step 5 - Implementing the CNN-VAE/2. Introduction to Step 5.mp458.85MB
6. Step 5 - Implementing the CNN-VAE/3. Initializing all the parameters and variables of the CNN-VAE class.mp471.72MB
6. Step 5 - Implementing the CNN-VAE/4. Building the Encoder part of the VAE.mp4133.64MB
6. Step 5 - Implementing the CNN-VAE/5. Building the V part of the VAE.mp480.33MB
6. Step 5 - Implementing the CNN-VAE/6. Building the Decoder part of the VAE.mp492.89MB
6. Step 5 - Implementing the CNN-VAE/7. Implementing the Training operations.mp4186.98MB
7. Step 6 - Recurrent Neural Network/2. Plan of Attack.mp410.5MB
7. Step 6 - Recurrent Neural Network/3. What are Recurrent Neural Networks.mp4121.09MB
7. Step 6 - Recurrent Neural Network/4. The Vanishing Gradient Problem.mp4111.17MB
7. Step 6 - Recurrent Neural Network/5. LSTMs.mp4136.52MB
7. Step 6 - Recurrent Neural Network/6. LSTM Practical Intuition.mp4187.41MB
7. Step 6 - Recurrent Neural Network/7. LSTM Variations.mp420.12MB
8. Step 7 - Mixture Density Network/2. Introduction to the MDN-RNN.mp483.39MB
8. Step 7 - Mixture Density Network/3. Mixture Density Networks.mp465.35MB
8. Step 7 - Mixture Density Network/4. VAE + MDN-RNN Visualization.mp445.3MB
9. Step 8 - Implementing the MDN-RNN/10. Implementing the Training operations (Part 2).mp4162.89MB
9. Step 8 - Implementing the MDN-RNN/2. Initializing all the parameters and variables of the MDN-RNN class.mp499.49MB
9. Step 8 - Implementing the MDN-RNN/3. Building the RNN - Gathering the parameters.mp476.58MB
9. Step 8 - Implementing the MDN-RNN/4. Building the RNN - Creating an LSTM cell with Dropout.mp4127.16MB
9. Step 8 - Implementing the MDN-RNN/5. Building the RNN - Setting up the Input, Target, and Output of the RNN.mp4131.12MB
9. Step 8 - Implementing the MDN-RNN/6. Building the RNN - Getting the Deterministic Output of the RNN.mp4125.49MB
9. Step 8 - Implementing the MDN-RNN/7. Building the MDN - Getting the Input, Hidden Layer and Output of the MDN.mp4146.98MB
9. Step 8 - Implementing the MDN-RNN/8. Building the MDN - Getting the MDN parameters.mp4109.44MB
9. Step 8 - Implementing the MDN-RNN/9. Implementing the Training operations (Part 1).mp4177.44MB